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1. Title & Abstract 
 

Thematic Guide to Night-time Light Remote Sensing and its Applications 
 

 
Christopher N.H. Doll1 

 
 
Abstract 
 
Night-time light imagery stands unique amongst remote sensing data sources as it offers a 
uniquely ‘human’ view of the Earth’s surface. The presence of lighting across the globe is almost 
entirely due to some form of human activity be it settlements, shipping fleets, gas flaring or fires 
associated with swidden agriculture. This extensively illustrated guide introduces users to the 
types of night-time light data available, its characteristics and limitations. It details the 
distinguishing features of the stable lights, radiance calibrated and time series Average DN 
datasets. The latter currently spans the period 1992-2003. The spatial and temporal characteristics 
of the datasets are presented using a range of techniques including temporal color composites. 
Preliminary analysis of this time series reveals considerable differences in brightness between 
data collected from different platforms. The second part of the guide examines how this 
interesting data source has been used and may be used to derive useful information about human 
presence and practice on Earth. Topics range from population and light pollution to economic 
activity, greenhouse gas emissions and using night-time lights to help with disaster management. 
Consideration is also given to the ecological ramifications of night-time lighting. With these 
elements set out, the final section explores other potential sources of night-time light data and 
how future systems may enhance our existing capabilities to understand the human environment 
through this the observation of lights at night.  
 
 
1 Formerly with the Center for International Earth Science Information Network (CIESIN), Columbia 
University, Palisades, NY, USA, and currently with the International Institute for Applied Systems 
Analysis (IIASA), Laxenburg, Austria. Email: doll -at- iiasa.ac.at 
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2. Introduction 
 
 

Cities, like cats, will reveal themselves at night. 
Rupert Brooke, Letters from America 

 
 
The presence of light across the Earth’s surface provides some of the most visually stunning and 
thought provoking scenes from space. The discovery that lights could be observed at night from a 
sensor that was initially conceived to observe clouds at night is one of the most fortuitous 
unforeseen benefits to have come from remote sensing technology. Whilst we are often in awe of 
scenes of outstanding natural beauty, what is stunning about night-time light imagery is that its 
presence is almost entirely human induced and gazing upon the Earth at night leaves us in little 
doubt of our capacity to modify our planet on a global scale at great speed. In the 2 centuries 
since Humphrey Davy first demonstrated a light bulb to the Royal Society in 1806, there isn’t a 
single country in the world where light cannot be detected. However there are more lights in 
some places than others. The relative brightness and spatial extent of lights can offer clues and 
insights into a whole range of human activities and enable scientists to gain a uniquely human 
perspective on the world.  
 
This guide covers the description and applications of the Defense Meteorological Satellite 
Program-Optical Line Scanner (DMSP-OLS) sensor. It takes a step by step look at the sensor and 
how it acquires the images and describes the data products that are available. Looking beyond the 
presence of lights, this guide will show the truly interdisciplinary nature of applications that can 
be considered with the use of night-time lights and will leave the reader in no doubt of how so 
many hitherto unconnected elements of human activity can be explored, described, modeled or 
mapped with night-time light data. Whilst the bulk of the guide deals with the imagery from the 
DMSP-OLS data set, the final section, presents other sources of night-time light data, at higher 
spatial resolutions offering insights into the future products and applications of light data.  
 
Night-time lights provide a versatile and user friendly data source for the social scientist, whether 
it is used simply to define an urban area or used more intensively to model population, economic 
activity or some other socio-economic parameter. The studies and applications discussed here 
represent the main body of work done with these data.  
 
With an understanding of what the lights show (and do not show), the reader will understand their 
value for research questions concerning the urban environment, and how their utility is greatly 
increased by combining them with other data sets that help to overcome the data set’s limitations.  
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3. The DMSP-OLS sensor and its data products 
 
This section describes the key elements and attributes DMSP-OLS sensor. The description 
reviews its history and how it acquires imagery at night. It then goes on to discuss the main the 
types of data products which are available for analysis.  
 
3.1. Description 
 
The Defense Meteorological Satellite Program, (DMSP) is the meteorological program of the US 
Department of Defense, which originated in the mid-1960s with the objective of collecting 
worldwide cloud cover on a daily basis (Kramer, 1994). The system was officially acknowledged 
and declassified in 1972 and made available to the civilian/scientific community (NASA, 1997). 
The DMSP programme has been repeatedly upgraded over time since declassification (SMC, 
1997); the latest series (Block-5D) incorporates the Operational Linescan System (OLS). The 
DMSP satellite (Figure 1) flies in a sun-synchronous low earth orbit (833km mean altitude) and 
makes a night-time pass typically between 20.30 and 21.30 each night (Elvidge et al., 2001a). 
Orbiting the Earth 14 times a day means that global coverage can be obtained every 24 hours. The 
OLS sensor has two broadband sensors, one in the visible/near-infrared (VNIR, 0.4 – 1.1μm) and 
thermal infrared (10.5 – 12.6μm) wavebands. (An explanation of the electromagnetic spectrum 
can be found in section 3.3 of the CIESIN Thematic Guide to Social Science Applications of 
Remote Sensing.) The OLS is an oscillating scan radiometer with a broad field of view 
(~3,000km swath) and captures images at a nominal resolution of 0.56km, which is smoothed on-
board into 5x5 pixel blocks to 2.8km. This is done to reduce the amount of memory required on 
board the satellite.  
 

 
Figure 1. Artists impression DMSP block 5 series satellite.  

 
 
Cross-track scanning sensors use a wide range of scan angles to acquire images and therefore 
suffer from two geometric problems. One is known as the bi-directional reflectance distribution 
function (BRDF), which describes the variation in reflectance of a surface for a given view and 
illumination angle. The other is a geometric distortion in pixel size as the scan moves increasingly 
off nadir (away from vertical). Low-level light amplification in the visible channel is facilitated 
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through the use of a photomultiplier tube (PMT) so clouds illuminated by moonlight at night can 
be observed. The gain applied to the signal varies every 0.4 milliseconds based on the predicted 
illumination of the scene from solar elevation and lunar phase and elevation. In addition to this, a 
BRDF algorithm further modifies the gain where the illumination angle approaches the 
observation angle to take advantage of the enhanced ‘hot spot’ of specular reflection. The OLS 
employs a sinusoidal scan motion, which maintains a nearly constant pixel to pixel ground 
sampling distance of 0.56km at all scan angles in fine resolution data mode. It has been specially 
designed to exploit the rotation of the scanning motion in order to reduce the expansion of the 
viewed area at high scan angles.  
 
These features not only permit the detection of visible band light sources down to 10-9 

Watts/cm2/sr but also produce visually consistent imagery of clouds at all scan angles. The 
sensitivity of the OLS sensor is some four orders of magnitude greater than other sensors such as 
NOAA-AVHRR or Landsat Thematic Mapper (Elvidge et al., 1997a), a feature that makes it 
unique amongst environmental remote sensing satellites. Although this was done with the initial 
aim of producing night-time cloud imagery on which to base short term cloud cover forecasts, a 
fortuitous unforeseen benefit was also discovered: city lights, gas flaring, shipping fleets and 
biomass burning can also be detected in the absence of cloud cover (Croft, 1978). 
 
Digital OLS data was not made available by the US Department of Defense and subsequently was 
not archived by the National Oceanic and Atmospheric Administration’s National Geophysical 
Data Center (NOAA-NGDC) from the time of declassification until 1992. Prior to this, scientific 
access to the data could only be obtained from a film archive. Despite this limitation, its potential 
as an indicator of human activity was noted by Croft (1978), Welch (1981), who analysed the 
correlation of lit area and energy consumption for selected American cities, and Sullivan (1989), 
who created the first global cloud free composite at a spatial resolution of 10 arc-minutes from 
data collected between 1974-84. A digital archive of night-time light imagery has been 
established since 1992 from which a number of global data sets has been produced. The 
dissemination of these data allowed for more detailed and quantitative analysis than had 
previously been possible. A range of these are presented in section 4. 
 
 
3.2.  Types of Product 
 
Since digital archiving began, a number of products have been released. There were initially two 
types of night-light data available: the frequency composite and a maximum pixel value for the 
cloud free orbits. The latter has since been withdrawn. At the time of writing, there are currently 
three processed versions of night-time light data sets products which are released by NOAA-
NDGC. Individual orbits can always be downloaded for individual processing should data over a 
specific area and time be needed. Whilst they are all based on the same fundamental imagery, 
there are important processing steps to be aware of when deciding which product to use. This 
choice will be dictated by the time (year), the information content of the imagery, and the whether 
temporal updates will be needed. 
 
There are three different types of imagery associated with the DMSP-OLS data set. 
 

• Frequency detection (Stable lights) 
• Radiance calibrated 
• Average Digital Number 

 
These are described in the following sections and briefly contrasted in section 3.3.  
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3.2.1. Stable Lights 
 
The digital archiving of DMSP-OLS data provided a catalyst for renewed interest in using this 
data source to advance the tentative observations initially made from OLS film data. The work of 
Christopher Elvidge and his team at NOAA-NGDC in Boulder, Colorado, in creating a ‘stable 
lights’ product represents the single greatest advance in the processing of OLS night-time light 
data. This product used six months’ worth of imagery acquired between October 1994 and March 
1995 during periods of low lunar illumination. Whilst lunar illumination was crucial to imaging 
clouds at night, it is a hindrance to observing light sources from the ground due to the reduced 
contrast of light sources from the ground.  Other hindrances include glare from scattered sunlight 
and bad scan lines. Filtering out bad scan lines (defined as 10 consecutive lights with no lights 
above of below) also removes lit pixels caused by lightning (Elvidge, 2005). Over the six-month 
period a temporal composite was built up of cloud free images of the earth at night. Compositing 
not only allowed clouds to be excluded, but also facilitated the analysis of ‘stable lights’. The 
presence of stable lights is important in distinguishing different light sources (e.g. city lights, 
shipping fleets or forest fires). However, the variation in brightness between orbits means that it 
is not possible to establish a single digital number (DN – or at sensor radiance) threshold for 
identifying VNIR emission sources (Elvidge et al. 1997a).  
 
To over come this, an algorithm was developed to automatically detect light using a nested 
configuration of 200x200 and 50x50 pixel blocks. The light-picking algorithm applies a threshold 
to the central 50x50 pixel block based on the histogram of the surrounding 200x200 pixel block. 
Background pixels are identified by working down the frequency distribution from the brightest 
pixel to identify the first DN value where five consecutive DN values have greater than 0.4 % (10 
pixels) of the total pixel counts. The threshold is established by calculating the mean plus four 
standard deviations of those background pixels. This threshold is then applied to the inner pixel 
block to identify pixels that are determined as being lit. There is a 60% overlap in area of the 
200x200 pixel blocks used to generate the background pixels between adjacent 50x50 pixel 
blocks which results in a smooth transition between threshold levels in each 200x200 pixel block 
(Elvidge et al., 2003). 
  
Using this detection algorithm, the pixel value is assigned according to the percentage of times 
light was detected during cloud-free overpasses. Analysing the temporal frequency and stability 
of lights can help to distinguish their most likely source. City lights can be identified because they 
are temporally stable. However, forest fires can also be identified due to their location and lack of 
temporal stability over the compositing period. Through this process, the global night-time light 
composite can be filtered into a variety of different products:  
 

• lights from human settlements and industrial facilities (city lights) 
• fires 
• gas flaring 
• shipping fleets 

 
 
A geolocation algorithm was used to map the data onto the 1km grid developed for the NASA-
USGS Global 1km AVHRR project (Eidenshink and Faundeen, 1994). City-lights accounted for 
most of the light emissions seen from space at night from this product. However, there were also 
contributions from other sources such as shipping fleets (common in the Sea of Japan and off 
Argentina), gas flaring and biomass burning in sub-Saharan Africa, the Amazon and SE Asia. 
These tended to be highly regional in nature. To download the data see “Night-time lights of the 
world, 1994-1995” in the References. 
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One issue with this data set is that certain areas of the globe receive more cloud-free views than 
others. This creates problems for the fire product, which often occurs in cloud-covered tropical 
regions. It should be noted that NOAA-NDGC do not feel 6 months worth of data was sufficient 
to fully discriminate between stable lights and fire. This is currently being investigated using 
dedicated fire products from other satellites such as MODIS, part of NASA’s Earth Observation 
System.  
 
One of the biggest problems encountered with this first version of night-time lights was low-light 
level pixel saturation. A new product was planned, which attempted to increase the detectable 
radiance range by varying the gain on the sensor thereby reducing the saturated area over city 
centres. 
 
 

3.2.2. Radiance-calibrated data 
 
The problems of relatively low-level pixel saturation from the 6-bit sensor over bright urban areas 
led to the experimentation and ultimate production of a new low-gain data set. Elvidge et al. 
(1999) described a method for detecting a greater range of settlements than in the 1994-95 
product by varying the gain of the sensor. Low gain experiments were conducted in March 1996 
to identify the gain settings that produce the best results. Such is the effect of the gain that sensor 
saturation can occur over a range of more than two orders of magnitude, likewise for the 
minimum detectable radiance value. Based on these experiments, two gain settings at 24dB and 
50dB were selected and were alternately applied to each 24-hour set of acquisitions taken in 
January and February 1997. The thresholding technique used to create the stable lights data set 
was found to perform poorly at identifying diffuse lighting, which is often dim and spatially 
scattered across the landscape. Such features were manually identified via the development of a 
software tool, which also provided a means of quality control for the product. 
 
High and low gain cloud-free composites were averaged. The radiance-calibrated average DN 
from each image was weighted by the total number of detections. The final data set contained 
calibrated radiances between 1.54 x 10-9 and 3.17 x 10-7 Watts/cm2/sr and was produced in byte 
(0-255) format at 30 arc-seconds (1km).  The conversion from DN to radiance is given in the 
formula:  
 

Radiance = (Digital Number)3/2 Watts/cm2/sr 
 
The range was made deliberately ample on either side to allow for any future variations in gain. 
Since the DN variation is a physically meaningful quantity as opposed to a ‘lit-frequency’ 
observation, this makes it a flexible data set for use in a variety of modelling schemes subject to 
finding appropriate relationships between radiance and the parameters of interest. Low gain data 
for generation of an improved global radiance calibrated nighttime lights product has been 
acquired at the turn of the millennium but has, as yet not been processed into a global data 
product so only the 1996-97 data set is available for download (see “Radiance Calibrated Lights, 
1996-1997” in the References). Radiance calibrated data for 2001 has been produced for the 
conterminous United States as part of a study to map impervious surfaces for analysing the 
impact of development sprawl. This is also available for download (see "Radiance Calibrated 
Lights, 2001" in the References). 
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3.2.3. Average Digital Number 
 
The latest and now most extensive release of night-time light data comes in the form of average 
Digital Number (DN) values. This version was originally presented as their change product, and 
initially offered two global coverages, 1992-93 and 2000, and a change product.  
 
The data was processed to use the high quality visible band data. Pixels were screened to remove 
those with lunar illumination, glare, bad scanlines and lightning and other marginal data (Elvidge 
et al., 2005). As with the stable lights, cloud screening was done using the thermal channel. 
Rather than using the onboard BRDF correction algorithm, only the centre halves of orbital scans 
were used discarding the outer quarters in a manner consistent with the radiance calibrated 
imagery. This consistent use of imagery from similar parts of the scan avoids the large differences 
in brightness possible from extreme view angles. Images were manually inspected for blooming 
conditions (see section 3.3.1 for an explanation of this phenomenon). 
 
This has recently been extended to a full archive of data from every sensor for every year. This 
facilitates the analysis of changing lighting patterns in the following ways: 
 

• The appearance of new light sources  
• The disappearance of light sources 
• The expansion and contraction of light sources 
• Positive and negative changes in the brightness of lights. 

 
There are 14 years worth of data available at near global coverage, full longitudinal (East/West) 
coverage (-180° to 180°) and partial latitudinal (North/South) coverage from -65° to 65° North. 
This area excludes the northern parts of Scandinavia, Canada and Alaska, where there are few 
lights but does capture the main cities in these countries. Four satellites (F-series) were used to 
collect the 14 years of data and there are six sets of co-temporal data to be compared between 
three pairs of satellite. These are listed in the table below. 
 
 

Satellite Series Years Co-temporal years with next series 
F10 1992-1994 1994 
F12 1994-1999 1997,1998,1999 
F14 1997-2002 2001, 2002 
F15 2001-2003  

 
 
This is a relatively new data set, expanding on the 1992-93 and 2000 change pair. As such, there 
is little information about how the data varies from year to year, however, some issues and 
caveats are described in the section 3.3.2 on temporal considerations. To download the data see 
Version 2 DMSP-OLS Nighttime Lights Time Series in the References. 
 
Another version of night-time lights yet to be released to the public takes the current global 
annual composites and divides the DN values by the frequency of observation of the lights over 
the course of that year to derive what is known as the lights index. The conceptual basis being 
that the brightness of lights can be further classified by taking into account how often that light is 
observed to be lit in the cloud-free observations. This version of the lights (version 3) was used in 
some recent research papers and researchers should be careful to note which version was used. 
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In addition to the freely available standard processed night-time lights products listed here, 
individual passes for a specific date may be purchased by orbit (from the equator making a full 
orbit back to the equator), suborbit (a subsection thereof), and geo-located data. For access to 
these data see DMSP Data Services and Pricing in the References. 
 

3.2.4. Comparison Among the Datasets 

 
A visual comparison is presented below in Figure 2 to gain an appreciation of the differences 
between the three data sets described above.  It is apparent the initial stable lights product has far 
less variation than the other two and the imagery saturates very rapidly at the maximum 100 
percent frequency detection value. The stable lights product is based on the 6-bit (0-63) 
quantization shown with the average DN values. This product also has a large number of pixels 
taking the highest range of values. The distribution of values is spread more evenly in the 
radiance-calibrated version with, with the majority of pixels in the low range and only very few at 
the brightest radiance values indicating sensor saturation (even with the gain turned down).  
 
In terms of the spatial extent of the detected lit areas, the average DN data set shows the most lit 
area, followed by the radiance calibrated data set. This is because they have not been filtered or 
thresholded to the same extent as the stable lights data set, which deals exclusively with city 
lights. The reason why the average DN data set depicts the largest lit area is addressed in section 
3.3.1 
 
 

 Stable Lights Radiance Calibrated Average DN 
Years Available 1994-95  1996-1997  1992-2003 
# Data sets 1 1 14 
Parameter Detection Frequency (%) Radiance Digital Number 
Value Range 0-100 0-255 0-63 

 
 
Figure 2. Comparison of the three different data sets over a portion of New England (from left to 
right: Stable Lights, Radiance Calibrated, and Average DN) 
 
 
3.3. Strengths and Limitations of the Data Sets 
 
 
There are both spatial and temporal properties of the DMSP-OLS data set which affect the 
efficacy of the data set for its range of applications.  Essentially these relate to changes in the 
spatial extent of lit areas and variations in the brightness of a pixel over time. Depending on the 
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nature of the application at hand, the relative importance of spatial extent versus information 
content (DN) will vary. Understanding how lights behave in space and time will lead to the sound 
scientific use of the data set and minimize misinterpretation of the results.  
 
 

3.3.1 Spatial Characteristics 
 
The principal spatial consideration to bear in mind when working with night-time light imagery is 
the extent to which the spatial area depicted on images matches the true extent of lit area on the 
ground. Imagery from the DMSP-OLS satellite has a tendency to overestimate this parameter, an 
effect generally referred to as “blooming” (and more recently “overglow”) in the literature. Small 
et al. (2005) cite three main reasons for this phenomenon, which are discussed briefly. 

 
• Coarse spatial resolution 

 
Although the DMSP-OLS sensor has a nominal resolution of 1km, this has been resampled from 
the 2.7km native resolution of the sensor. An inherent feature of satellite imagery is that it will 
generalize ground based features to a single DN or radiance value. In the case of night time light 
imagery, this manifests itself as pixels appearing lit, when the light source is not being emitted 
over the entire pixel area. Examples of higher resolution night-time light imagery and how it 
compares to the DMSP-OLS can be found in section 5.1 and 5.2. A general discussion of scale 
and resolution and the problem of “mixed pixels” in remote sensing can be found in sections 3.3 
and 3.5 of the CIESIN Thematic Guide to Social Science Applications of Remote Sensing. 
 

• Large Overlap between pixels 
 
A feature of the data acquisition process is that there is a large overlap (some 60%) between 
pixels. This means that light observed in one location has the chance to be recorded in more than 
one pixel. This can contribute to a larger lit-area being detected than is actually the case. 
 

• Errors in the geolocation 
 
Errors are inherent in the projection process. Data is recorded in arrays, the spatial position of 
these data values are calculated from the navigation data onboard the satellite. These values are 
then projected onto a 1km grid. The grid itself is an approximation of the Earth’s surface 
corrected for the topographic variation. Each transformation introduces errors into the process.  
 
To this a fourth factor, the atmospheric water vapour content can be added. Lights can appear 
dimmer and more spatially diffuse where thin clouds are present, which is consistent with similar 
effects of image quality reduction for other optical (or “passive”) sensors.  
 
The combined effect of these factors ultimately results in a general overestimation of area, which 
can be deceiving due to the visually stunning nature of the data set. Figure 3 illustrates the 
blooming effect, and also shows different sources of light that can be observed from the DMSP-
OLS sensor. It is apparent that cities appear lit, but so too do traffic on unlit sections of highway 
and areas that are unlit but which are affected by overglow.  
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Figure 3. A detail from the DMSP-OLS average DN data set from 2002. Night-time lights contrast 
enhanced to show the overglow surrounding bright urban centers.  Note how light is detected more 
than  50 kilometers offshore from Los Angeles  Overglow digital number (DN) values exceed DN 
values for lighting from Interstate 15 highway traffic and many small towns. 
 
 
To correct this effect, thresholding (excluding values below a certain value) has been used to 
reduce the area of the lights. Previous studies have identified thresholds ranging from 80-97% for 
different cities in the US (Imhoff et al., 1997). Howver, it soon becomes apparent that there is no 
single threshold that can be applied which would match the urban delimitation for all cities. In 
particular, thresholding large urban areas tends to result in the attenuation of lights associated 
with smaller settlements. The implication of this finding is that a range of thresholds needs to be 
applied depending on the size of the settlement involved. Research conducted by Small et al. 
(2005) examined the stable lights 1994-95 and change pair 1992-2/2000 DMSP-OLS data sets in 
conjunction with Landsat imagery and found that lighted area estimates are larger than the 
maximum estimates of built area from Landsat for almost every city in the lights data set. 
Respective thresholds of 10 and 14% for the 1994-95 and change pair data sets were found to 
optimize the trade off between reducing lit area to match city size and attenuating lights of 
smaller settlements. Their comparison of lit area with overglow extent revealed a linear 
proportionality and suggests that a scale dependent overglow correction model could be 
developed, in order to ‘shrink’ the lights down to more closely match their built-up area. This 
proportional correction was tentatively put at 1.25 of lit to built diameter, subject to further study.  
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3.3.2. Temporal Characteristics 
 
Until recently, there has been little in the way of temporal analysis of the DMSP-OLS night-time 
light products owing to the lack of a temporally consistent data set with which to assess changes. 
The release of annual data from 1992-2003 described in section 3.2.3, paves the way for a 
rigorous undertaking of this analysis. There are at present no published articles detailing these 
differences. Some work has been done with the 1992/3 and 2000 change pair data set. Low-level 
pixel saturation in both the 1992-93 and 2000 data sets prevent city centre analysis, but it does 
allow investigation of the spatial expansion of lights in peri-urban areas. Furthermore, the 1992, 
1998 and 2003 versions of this average DN data set (released prior to the full 14 years data) have 
been used to investigate temporal changes. This method involves constructing tri-band  red, 
green, blue false color composites with a different year for each channel. The convention has 
been to put the 1992 year through the red channel, 1998 in the blue, and 2003 in green. 
Superimposition of these channels can reveal whether lighting has been lost (red hues), gained 
(green hues) or emerged then disappeared (blue hues). This is most striking in places which have 
undergone massive economic/political change such as the countries of Eastern Europe following 
the fall of communism and the transition to free market economies. In Figure 4, we see that the 
former Soviet republics of Ukraine and Moldova are dominated by red hues indicating lights were 
most prevalent in 1992 and then declined in 1998 and 2003. This is sharply contrasted by Poland 
and Romania to the west whose greener and bluer hues indicate spatial expansion and brightening 
of lights. 
 

 
 
Figure 4. Temporal colour composite over Eastern Europe. Red: 1992, Green: 1998, Blue: 2003. 
 
 
The problem with the 3 colour composites over long time periods is that they come from sensors 
on board different satellites and there is no internal or cross calibration between them. For 

Romania 

Ukraine 

Moldova 

Poland 
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practical purposes this means that we cannot say with any certainty whether changes in the 
brightness of lights are due to changing ground conditions or to changes in the sensor over time. 
 
The latest  night-time light product (1992-2003) reports the average digital number observed over 
the course of the entire year (2003). However, these are not radiometricaly calibrated. This means 
that a DN value from a certain satellite year may not have the same brightness as the same DN 
from another year. More over, data values from one satellite may not be compatible with those 
from another. Preliminary research undertaken by the author suggests that there are considerable 
differences between the sensors on the F14 satellite (1994-1999 - which provides the green 
channel) for the color composite shown in Figure 4. In this situation, great care needs to be taken 
when interpreting the difference in brightness from sensors flying on different satellite series. The 
fact that there are duplicate sensor data for many years will help researchers develop some form 
of calibration to help interpret brightness changes over time. 
 
Comparing brightness 
 
Looking at the total DN of the scene, it is apparent that the F14 1997-2002 data series is 
consistently dimmer than the other three satellite series. Since the F14 series is co-temporal with 
both the F12 at its early range (1997-1999) and F15 at its late range (2001-2002), this causes a 
significant difference in observed brightness for the same year. There is also a similar, though 
less pronounced difference between the F10 and F12 value for 1994.  The exception is for the 
year 2003, where despite maintaining a high lit area, the brightness detected by the F15 is 
substantially lower compared with the years from the same sensor and even compared to previous 
years from other sensors. 
 
Here total DN is compared to GDP for India to illustrate how different years have different 
brightness levels. Currently, it is not known why the F14 series is consistently dimmer than other 
sensors in the series, or why the total DN for 2003 drops by 35% from the previous year. This 
certainly has implications for generating three band colour composites where inferences are made 
about development from the shades of red, blue and green present in the image.  
 

 
Figure 5. Total DN for India 1992-2003 using overlapping years from 4 different DMSP-OLS 
sensors. 
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In Figure 6, analysing the DN sum of two sensors, F12 and F14, for the same time period in 1997 
(indicated with the line in Figure 5), we see that the difference in total DN is persistent 
throughout the DN range (i.e. increasing the threshold from where the total DN is calculated). 
Total DN values only converge at the highest levels of brightness. Attempts at cross calibrating 
the lights are underway. At the time of writing preliminary attempts to calibrate this series have 
been made to correct for these differences. Elvidge et al. (2007) systematically quantifies this for 
the years 1995-2004 with the later version 3 data set (not the version 2 currently available).  
 
 

 
 

Figure 6. Comparison of total DN over India as the sum is taken at increasingly higher thresholds. 
This compares F12 and F14 satellites over India in 1997.   
 
 
 
Although questions remain over the relative brightness of the satellite between years and series, 
the lit-area detected by the lights should be a more consistent parameter that can be used across 
platforms. Over time, certain spatial developments are clearly visible such as the lighting of the 
India-Pakistan border over time (Figure 7). 
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Figure 7. Time series of showing the illumination of the Pakistani-Indian border in Rajasthan from 
the F12 satellite from 1994 (top left) to 1999 (bottom right). 
 
 

3.3.3. Considerations  
 
Given the range of variations that can occur with the night-time lights data set, any application 
will need to take into account the limitations of using this data source. For applications where 
light will be used solely as a delimiter of urban extent, then considerations of blooming 
(overglow) are most pertinent. Of the two phenomena, overglow is currently the best understood 
and strategies exist in the literature (Small et al., 2005) to account for its effects. 
 
The recent release of temporal time series of night-time light data will allow for the study of 
changes in brightness over time. Currently there are no published reports which systematically 
analyse the changes in brightness. However early evidence suggests that the F14 series (1997-
2002) has lower brightness levels compared to the others and that the data from the F15 2003 
sensor also seems anomalously dim. It is recommended that these data should not be used directly 
in year-on-year applications but rather should be individually calibrated to the parameter in 
question. As yet it is not possible to say whether the sensitivity in change in DN is due more to 
changes in ground lighting conditions or to differences between and within sensors. 
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4. Applications of DMSP-OLS 
 
A range of social science applications of remote sensing data is covered in the CIESIN Thematic 
Guide to Social Science Applications of Remote Sensing (de Sherbinin et al. 2002). It is not the 
aim of this section to repeat this here, but rather to provide a more focused description of how 
night-time light remote sensing data may be used to address research questions in the social 
sciences. 
 
Night-time light imagery has been used for a number of other applications, the most intuitive of 
which is the mapping of urban areas. The ability to consistently and accurately delineate urban 
areas facilitates other spatial research of urban areas, including research using other remote 
sensing instruments. More sophisticated applications use the spatial location of the lights in 
conjunction with their brightness to model, estimate or map socio-economic parameters. The 
examples below provide a flavour of the breadth of application for the data set and discuss how 
the DMSP-OLS data may be used to gain insights into these issues. For a complete 
methodological description, the reader is advised to consult the references associated with each 
application.  
 
 
4.1. Urban Extents 
 
Global land cover maps are spatial classifications of the Earth’s surface. They are traditionally 
focused on the major vegetated biomes and cropland areas, with urban areas being the residual. 
This tends to underestimate urban area. By contrast night-time light imagery explicitly maps lit 
areas, however the overglow characteristic described in section 3.3.1 means that the resulting 
maps tend to overestimate urban extent. Doll & Muller (1999a) found that unfiltered night-lights 
covered 20 times as much area at the continental level compared to urban delineation of the 
Digital Chart of the World data set (ESRI, 1997).  
 
Imhoff et al. (1997) investigated how well DMSP-OLS defined urban areas in the US correspond 
with census data. Using an iterative thresholding technique, they established a threshold of 89% 
for the 1994-95 city lights data set. This threshold was identified as being the level where, on 
average, on could shrink the city-lights but preserve the integrity of the lit urban cluster (i.e. no 
internal fragmentation within the cluster). This was detected via analysis of the perimeter vs. area 
of clusters, with a sudden jump in perimeter length indicative of fragmentation. When overlaid 
with US Census bureau data, there was no significant difference between the two areal 
assessments. This approach was further exploited by Small et al. (2005) who used this technique 
to investigate more general corrections for the overglow phenomenon associated with DMSP-
OLS data (see section 3.3.1). The Imhoff et al. (1997) analysis applies only to the conterminous 
United States and it is unknown how this threshold performs in other parts of the world. 
 
Sutton (2003) used the radiance-calibrated data set to investigate urban sprawl in the US, plotting 
the natural log of lit area vs. the natural log of population for US cities above 50,000. Those cities 
lying below the regression line were deemed to be affected by urban sprawl since the have a 
lower population density. Two radiance thresholds were used: the lower one (900 μW/cm2/sr) 
was used to incorporate urban agglomerations, whilst a high one (2000 μW/cm2/sr) considered 
cities more discretely. Cities in the central US were found to be have the highest level of sprawl 
according to this measure. 
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A synthesized data set of impervious areas (DMSP Data download, 2006) has been produced by 
NOAA-NGDC, and night-time lights were used to delineate urban areas for CIESIN’s Global 
Rural-Urban Mapping Project (GRUMP) data set (CIESIN 2005).  
 
  
 
4.2.  Population  
 
Population studies have a long history in remote sensing. A review of demographic studies using 
sources of remote sensing data other than night-time lights and broader methodologies are given 
in section 5.1 of the CIESIN Thematic Guide to Social Science Applications of Remote Sensing. 
Population prediction from night-time lights and remote sensing more generally relies on using 
relationships between the size (area) of a settlement and its population. The allometric growth 
model has been widely used to model the relationship between area and population. Stewart and 
Warntz (1958) demonstrated the link between the radius of a built up area and the population 
living within it. On the basis of their empirical results they established the relationship: 
 

r = aPb 
 
where: r is the radius of a circle of equivalent area to the settlement 

P is the Population   

a, b are coefficients 

 
The development of aerial photography and remote sensing technology has extended this analysis 
to regional and global scales. 
 
Initial analysis of night-time light images revealed a striking (though not unexpected correlation) 
between city-lights and human population density for the continental USA (Sutton et al., 1997). 
The total area of light at night observed by the DMSP-OLS ‘city-lights’ product has been 
observed to correlate with population figures for countries regardless of economic development 
(Elvidge 1997b; 1997c). Doll (1998) extended these observations to analyse the relationship 
between the lit-area in a country and urban population. Continent-wide distributions were also 
examined. Graphs of lit-area versus city population were produced. Lit-area was calculated by 
converted the lit clusters into polygons using a geographical information system, with the area 
attached as an attribute to each polygon record. City population and location were collected from 
a variety of databases including the United Nation’s demographic Yearbook for 1995 (UN, 1995), 
which provided a database for every city with more than 100,000 inhabitants. This resulted in a 
global database of 2,954 cities with which to compare against the night-time light clusters. The 
analysis relied on the matching of city locations to clusters of light; both continental and 
individual country level analysis was performed (Figure 8). Large conurbations often contained 
multiple population points; in this case, the populations were summed and attributed to the entire 
lit-area of the polygon. Urban population figures relating to the urban agglomeration rather the 
city proper were used to be as consistent as possible with the light data. Lit-area versus 
population relationships were analysed in log-log space as has been advocated in previous studies 
by Tobler (1969) and Elvidge et al. (1997b; 1997c).  
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Figure 8. Frequency Composite Image of urban polygons in Switzerland and their associated 
population points from the database. 
 
At the continental scale the relationship exhibits an essentially linear (in log-log space) 
distribution, which becomes ever more spread out at lower area/population levels as is shown for 
Europe in Figure 9. This suggests that the lit area (and presumably population density) varies 
considerably among small cities and towns. Other error sources contributing to this effect include 
the inaccurate city population statistics and the assumption that all population is accounted for 
within the polygon. Care was taken to use the population figures pertaining to the urban 
agglomeration rather than the individual town where possible.  
 
The individual country relationships tend to be a linear subset of this distribution. 

 
Figure 9. Lit-area/population scatterplot for European cities with annotations referred to in the text 
below. 

 
 
The individual country relationships were used to predict the urban population for each country 
by estimating the population of lit areas which had no population data associated with them. This 
was then compared to the urban population figure published by the World Resources Institute 
(WRI, 1996). Forty-six countries were tested in all; these results are presented in Doll et al. 
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(2000). These methods and results were replicated and extended by Sustton et al. (2001) who 
went on to calculate a figure for the global population. This was done by equating this estimated 
population to the known urban population, and then scaling this up to the total population of a 
country by using the percentage of people living in rural areas figure. Sutton et al. (2001) also 
observed a broad based distribution to points in his lit-area population scatterplot similar to that 
shown in Figure 8. These points could be largely resolved by dividing them into three categories 
based on the per-capita income of the country to which it belonged. Low-income countries (per 
capita GNP < $1000) occupied a band of points on the trailing edge of the distribution. Medium 
income countries ($1000 < p.c.GNP < $5000) occupied the middle part of the cluster, whilst 
high-income countries’ points were located further to the right and composed the leading edge. 
The further to the left of the graph a point is, the smaller the settlement was observed from the 
night-time light imagery. This implies one of two things: either that the low income countries 
have the highest population densities, or that much of the population may be undetected due to 
low lighting in informal settlements 
 
Beyond aerial extent, a more sophisticated use of light-time lights can be employed using the 
information content (brightness) to ascribe values to population density. Doll and Muller (1999) 
used the radiance calibrated for country-level population estimation and also investigated 
population morphology at the city scale in relation to night-time lights (Doll and Muller, 2000). 
Of note from this study was a spatial mismatch between the location of brightest lights and 
highest population densities for London. Brightest lights are to be found in downtown areas 
which tend not to have the highest residential population. Sutton (2003b) explores this further 
describing a number of functions that may be applied to describe how population density varies 
as a function of distance from the city center. The models included linear, parabolic, exponential 
and Gaussian functions to describe the variation in population density from the center to the edge 
of a cluster. The distance to the edge of a cluster was calculated for each pixel in a cluster. This 
served as the starting point from which different models could be applied. Pixels over water 
and/or lying in another country were also evaluated in this way and then discarded to take account 
of the fact that the highest population density is at the edge of a coast or border for cities like 
Chicago (Lake Michigan) or Los Angeles (Pacific Ocean). Empirically, the distance grid can be 
overlaid on to census-block level population density data and then derive a relationship between 
population density and distance to the center of the cluster. None of these models tested by Sutton 
(2003) produced a R2 value greater than 0.30 when tested against the original census. Besides the 
need for accurate co-registration between the two data sets Sutton (2003b) suggests that varying 
population density at constant distances from the centre of a cluster is responsible for the low 
correlation. 
 
Paradoxically, night-time lights may be more indicative of day-time populations since there is a 
large diurnal migration of people from residential areas to areas of work.  Recognition of this 
concept has been used to create a global database of so-called ambient population by using lights 
in combination in a wide array of other spatially explicit data. The Landscan database models 
population globally at 30 arc-minute (~1 km) resolution. Its model aims to allocate population 
based on where people are likely to be during the day, rather than based on residential location 
from census data. In order to do this, Landscan takes the census data and redistributes it according 
to probability coefficients calculated from urban centres, transportation networks, elevation and 
landcover types (Dobson et al., 2000). There have been annual updates to this methodology since 
it’s creation in 1998, rendering cell-level intercomparison inadvisable. The use of night-time light 
imagery was subsequently dropped as a model input due to the “overt effect of economic 
development on the brightness and intensity of lighting” (Bhaduri et al. 2002 quoted from 
Elvidge et al. 2007). For access to the data set see Landscan in the References. 
 



CIESIN Thematic Guide  Night-time Light Remote Sensing 
 

 22 

Night-time light imagery is also used in the Global Rural Urban Mapping Project (GRUMP), to 
allocate populations from large census units into urban areas (Balk et al., 2004). This data set of 
urban areas with coincident population counts has been particularly useful for more precise 
mapping of populations in larger administrative areas with multiple urban areas whilst essentially 
preserving the integrity of census data rather than distributing people based on cumulative 
likelihoods.  
 
As such, the choice of data set will be governed by the application of the study. Landscan offers 
ambient population counts and high spatial precision although the precise methodology is 
unpublished, whilst GRUMP offers accurate census (or residential) population mapped using a 
transparent methodology classified into urban and rural classes. 
 
 
4.3. Economic Activity 
 
The previous section made reference to the mismatch in population and radiance at fine scale 
resolutions. Given the coincidence of brightest lights and downtown areas which are nodes of 
economic activity, an obvious extension of the application of night-time lights is to map 
economic activity. 
 
The relationship between night-time light and economic activity at the country level was first 
described by Elvidge et al. (1997). Using the 1994-95 city lights data set, the lit area was plotted 
against GDP for a number of countries of varying economic activity. This was subsequently 
expanded upon by Doll et al. (2000), who constructed a global relationship of lit-area vs. GDP 
and then used this to create the first ever map of disaggregated GDP based on satellite data. This 
map had a spatial resolution of 1°x1° (geographical coordinates) and estimated the global 
economy to be worth $22.1 trillion (1992, international $, 80% of the total value). Where possible 
one uses the purchasing power parity (PPP) measure of GDP. PPP attempts to equalize 
purchasing power across countries so a dollar of PPP GDP should buy the same amount of goods 
in every country. This is done by analyzing the prices of a basket of goods. It is the standard 
benchmark for making international economic comparisons.  
 
This result was confirmed and extended by Ebener et al. (2005), who used other metrics from the 
night-time light data set to test correlations with per-capita GDP for application to the targeting of 
health resources. They found the total and mean frequency of observed lights to be better 
correlated per-capita GDP than lit-area. Results were grouped by climatic type and the percent of 
agricultural GDP to improve the relationship, but sub-national estimation was found to be less 
reliable than national level analysis. 
 
The radiance calibrated data set facilitated the investigation of the relationship between brightness 
of the lights and GDP rather than lit area. Sutton and Costanza (2002) created a global map of 
market (and non-market) economic activity at 1km resolution. This employed a similar 
methodology as used by Doll et al (2000), using a logarithmic relationship between brightness (as 
opposed to lit-area). There is some concern that this method is not appropriate for mapping across 
scales greater than one order of magnitude of the input data used to construct the relationship. 
 
In recognition of this limitation, and taking advantage of the existence of better quality economic 
data for local areas, Doll et al. (2006) created maps of the conterminous United States and 
Western Europe at 5km resolution using linear relationships constructed from sub-national GDP 
data (Gross State Product for the US). Analysis was carried out on a country by country basis to 
accommodate the fact that different countries have different relationships based on their cultural 
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use of lighting. Out of the counties studied the US was found to have highest amount of lighting 
per unit of economic activity. The use of sub-national data allowed for the analysis of within 
country differences of the radiance-GDP relationship. In essence, four different types of 
relationship were identified. 
 

1. Straight linear with all regions lying on a single line 
2. Offset outlier where the most economically active area is also the brightest but is 

anomalously bright compared to other regions. 
3. Extreme outlier where the most economically active place is not the brightest area 
4. Two relationships in one country, which are geographically separated indicating regional 

disparity (Figure 10). 
 
 

 
 
Figure 10. Light map of Germany and the associated graph of radiance and regional Gross Domestic 
Product. Note how points in the former East Germany have a different relationship to those in West 
Germany. 
 
 
This analysis has highlighted a number of fruitful research areas to investigate and suggests that 
lights can offer insights into a range of other areas in the social sciences. Most counties had an 
outlier of some description, usually with the capital city offset from the other regions in the 
country. Extreme outliers could also be a function of very small administrative units being used. 
This suggests that there are some different relationships for the different sectors of the economy.  
 
All these maps use only light to distribute economic activity. This is a reasonable assumption to 
make in developed countries where industry and service sectors can comprise over 90% of the 
economy. Although agricultural productivity is spatially more widespread it is represented in 
these maps as nodes – i.e. the map records the agricultural activity in the towns which emit light, 
not in the fields where crops are being grown. This is an important caveat to the maps described 
here and one which would be the first item to address when  improving these maps and extending 
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them into the developing world where agricultural comprises a larger section of the national 
economy. Agricultural maps produced by the Center for Sustainability and the Global 
Environment (SAGE) at the university of Wisconsin at Madison are seen as candidate data sets to 
incorporate with the lights. 
 
An inverse or complementary application of night-time light data is to identify the location of the 
poor through the absence of light. Elvidge et al (2006) derived a global poverty map by dividing 
the 2003 lights data set by the 2004 landscan gridded population data set. This was then 
calibrated to the poverty statistic of the % of people living on $2 and the relationship used to 
estimate the poverty count in each grid cell. The total of 2.3 billion people living in poverty 
compares to 2.6 billion from the World Bank. Whilst there was aggregate agreement at the global 
level, it was noted that the cultural use of lighting may have lead to erroneous results in certain 
localities; Egypt’s poverty estimate of 6.7% was far below its official level of 43.9%, whilst the 
US states of Vermont and Maine anomalously high estimates could be due to limited outdoor 
lighting. 
 
Lights by themselves do not adequately capture the full range of economic activity. Other 
researchers have used different methods to map economic activity, such as applying per capita 
GDP to population headcounts. This method has other limitations, however, such as the 
assumption of a uniform level of economic activity and wellbeing across entire populations.  
 
 
4.4. Greenhouse Gas Emissions 
 
An important policy-relevant area to which night-time lights can make a contribution is that of 
mapping and monitoring greenhouse gas emissions. Elvidge et al. (1997) first identified the 
correlation between lit area of lights and carbon dioxide (CO2) emissions. This was subsequently 
expanded upon by Doll et al. (2000) who investigated mapping CO2 emissions at 1°x1° resolution 
in a manner similar to that of economic activity from the same paper. This was compared to a 
map of CO2 emissions produced by the Carbon Dioxide Information Analysis Center (CDIAC). 
Whilst the night-time lights based map did poorly in estimating emissions directly from the 
relationship, it did a better job of mapping the spatial distribution of emissions. Despite an overall 
underestimation of emissions, a difference map was produced (Figure 11) and revealed that some 
areas of the world were overestimated.  This is not entirely unexpected as there are some 
significant outliers in the relationship. In the study by Doll et al. (2000), the authors note that 
many of the former soviet republics appear to be have more emissions than would be predicted by 
the amount of lights present. This is hypothesized to be due to the lower than average level of 
street lighting and the higher proportion of relatively energy inefficient industrial activities in 
those countries.  
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Figure 11. Difference map between the DMSP-OLS map of emissions and that produced by CDIAC. 
White areas show the closest agreement between the two maps. Blue areas show where the OLS map 
over-estimated emissions relative to the CDIAC map, and red areas show where they under-
estimated them. 
 
 
Saxon et al. (2000) note that outliers also include small islands states being entirely illuminated. 
Their small size leads to an extreme concentration of their CO2 sources, so their emissions are no 
longer correlated to illuminated area. They go on to discuss how use of the relationship between 
lights and CO2 emissions can be used as a benchmarking exercise upon which to base future 
observations in the model, in order to track country compliance with the Kyoto Protocol – the 
premise being that starting from an initial starting point, it is possible to track whether a country’s 
reported emissions reduction is matched by it’s pattern of street lighting and energy consumption. 
 
The poor agreement of the satellite derived CO2 map with the CDIAC estimates was possibly due 
to the mode of energy generation (e.g. nuclear, wind, solar) and also how the energy produced 
was utilised. One has to consider what the ‘invisible’ energy uses are, and how important they are 
in assessments. The disparate magnitude of emissions between the two maps underlines the 
requirement for a far more sophisticated model incorporating many more factors than just the 
relationship between lit-area and emissions. Elvidge et al (2000) described how this might be 
accomplished using a radiance calibrated night-time lights data set. In the study Elvidge et al. 
presented a graph of cumulative brightness versus energy-related carbon emissions for the 48 
conterminous states of the US, which showed the two parameters to be strongly positively 
correlated. Building on this result, they outlined the extensive ancillary data required to make 
sensible assumptions about distributing the data. It is likely that countries will also have to be 
grouped into those which are heavily reliant on fossil fuels, and therefore should have closer 
agreement to the official estimates. It is also likely that GDP will be a key determinant of how to 
group these countries, in the same way Sutton et al. (2001) has shown for population estimation. 
Mapping of CO2 emissions is potentially one of the most valuable applications of using night-
time data, if it can be demonstrated to produce reliable and consistent results.  
 
More broadly, Toenges-Schuller et al (2006) used the stable lights data set as a proxy for the 
pattern of NOx emissions (NOx emissions are attributable in roughly equal measure to motor 
vehicles, power generation, and industrial activities). It was used in conjunction with a an 
emissions inventory database, which provided source strength data and a global 3D chemical 
transport model (CTM), which simulates the mixing ratios for 63 chemical species. The lights 
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were converted into NOx emissions by integrating over lit pixels falling in the larger grid of their 
CTM. Using the light data made the assumption that there was no annual variability. This was 
then compared to measurements taken from dedicated satellite sensors measuring atmospheric 
NOx concentrations. In this study the lights were used as an independent verification for 
measurements taken from another satellite sensor rather than as a direct proxy for a variable, 
which would then need to be validated. 
 
As with economic activity, lights only partially capture the magnitude and distribution of 
greenhouse gas emissions. Whilst city lights may act as proxy for general/aggregate diffuse 
emissions, more specific information would include the locations of the densest air routes and a 
comprehensive database of power station locations to properly identify point source emissions. 
One component of point source emissions where lighting is specifically generated comes from 
gas flaring. Gas flaring occurs at petroleum production and processing facilities, where the gas by 
product is safely burnt off. These show up as very bright circular clusters on night-light imagery. 
Elvidge et al. (2007) used a time series of images to quantify the amount of gas flaring occurring 
globally between 1995-2006 as part of the Global Gas Flaring Reduction Initiative. Countries 
were found to follow 4 main trends, stable; experiencing a downward trend; increasing trend over 
time whilst others peaked in the middle of the time series. However, they found an aggregated 
stabilized pattern of flaring at the global level ranging between 150-170 Billion cubic meters/year 
over the period of observation.  
 

 

4.5. Light Pollution 
 
Probably the most intuitive application of night-time data is to map and quantify the amount of 
light pollution. A clear view of the universe serves as a constant reminder to consider the nature 
of our existence and begs questions which we may never be able to answer. However, a clear 
view of the night sky for those who live in the developed world is a rarity.  
 
Cinzano et al. (2001) set about using the DMSP-OLS radiance-calibrated night-time light data set 
to quantify artificial night sky brightness. Light propagation from the top of the atmosphere 
radiances present in the DMSP-OLS product was modelled through Rayleigh scattering by 
molecules, Mie scattering by aerosols, atmospheric extinction along light paths, and Earth 
curvature. Hence, many areas that should appear dark in the night-time light product due to the 
absence of a ground level light source are in fact affected by light pollution from adjacent bright 
areas. Cinzano et al. (2001) intersected their atlas of light pollution with the Landscan 2000 
global population density database (Dobson et al. 2000) to assess the number of people affected. 
The extent of this pollution is so widespread across the developed world that more than 99% of 
the population of the European Union and United States and 66% of the entire world population 
suffer from some degree of light pollution. In particular, about half the population of the 
developed world does not have the possibility of viewing the Milky Way with the naked eye.  
 
The MANTLE project (Mapping Night-Time Light Emissions) was an EU funded project 
conducted among eight European academic and private bodies. Using the DMSP-OLS radiance-
calibrated data set as its primary data source, it aimed to investigate how it can be used as a 
surrogate for a range of socio-economic indicators including GDP, population, energy 
consumption, urban typology, and landscape/skyscape quality. Using GIS-based modeling 
techniques, they developed a means of modeling light pollution by land cover classes to enhance 
the night-time light data set (Figure 12). Combining such enhanced data with other spatially 
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explicit urban data such as road networks may be used to create environmental disturbance maps 
and their counterparts, tranquility maps. 
 
 

 
 
Figure 12. Result of using landuse classes to enhance night-time lights with the original DMSP-OLS 
image on the left and the result of its enhanced light pollution map based on land cover classes.  
 
 
Besides obscuring the night sky, nocturnal lighting affects species across all taxonomic groups in 
urban and other ecosystems. The primary modification to species behaviour is that it attracts 
many insects, which in turn attracts its prey. Bats are a good example of how their traditional 
predatory instincts are affected by their prey becoming more spatially concentrated around street 
lamps (Rich and Longcore 2006). The reason why fishing fleets can be detected in DMSP-OLS 
imagery is because the fishermen use powerful lamps to attract squid to the surface waters. Other 
impacts include increased predation of sea turtle hatchlings (Salmon et al. 2000, Salmon 2006) 
and mortality of seabirds attracted to offshore gas flares (Wiese et al. 2001, Montevecchi 2006). 
Declining reptile populations and changes in lacustrine zooplankton have also been noted (Moore 
et al, 2001). However such effects are as yet largely unquantified due to the coarse resolution of 
the OLS sensor and problems with overglow. Nonetheless, scotobiological research could be 
greatly advanced if improvements to these parameters are made (see section 5.3; see glossary for 
definition of scoto-biology). 
 
Whilst lights have largely unintended effects of species behaviour, the deliberate use of lights to 
attract species is via powerful lamps to attract squid to the ocean surface is well captured from 
DMSP-OLS imagery. Walluda et al. (2004) described a study using night-time lights data to 
quantify the size of fleets fishing the jumbo flying squid (Dosidicus Gigas) in the Eastern Pacific 
off the coast of Peru. Orbital DMSP-OLS data (as opposed to annual composite) for July to 
December was compared to satellite based ship data in order to calibrate the illuminated area to 
the size of the fishing fleet. A correction was applied for the considerable reflection from the sea 
surface. They were able to estimate the size of fleets to within 2 vessels 83% of the time 
suggesting it maybe a useful tool to police certain fisheries and encroachment into Exclusive 
Economic Zones. Further effects of lighting on species are discussed in section 5.3. 
 
Another marine application has used night-time lights to assess anthropogenic stress to coral 
reefs, which is a highly sensitive component of the marine ecosystem. In this case, it is not the 
precise location of the lights themselves, but the relative location of light to the reef that is 
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important. Aubrecht et al. (2008) presented a method which evaluates the proximity of cities, 
boats and gas flares using thresholds of 25km, 5km and 5km respectively for each class. The 
lights index (pixel DN divided by cloud-free frequency of observation) of the 2003 night-time 
lights annual composite was used in this study to calculate a light proximity index (LPI) by 
summing the quotient of pixel values and respective distance for each reef location. The study is 
of interest to this guide as it provides a useful overview of the different considerations researchers 
seeking to use these data in any analysis would do well to think about: 
 
i) Data collection and algorithm design based on the format of the respective datasets. In 

this example reefs could be treated as either individual entities or aggregated to the level 
of the entire reef group. How to assimilate disparate datasets to answer your research 
question?  

ii) The choice of threshold distance for different classes and how to calculate the impact of 
light on coral reefs. A linear distance decay model was used but other formulations are 
available.  What is the basis for choices in the model?  

iii) Analysis of results. Aubrecht et al. (2008) consider total LPI and then mean LPI for the 
number of points in a reef cluster. In such a ranking small reef systems with few points 
may be over emphasized at the expense of larger ones. Splitting the light emissions by 
source allows reef stress from different sources to be identified as areas suffering from 
multiple stressors. Sensible design allows for flexible analysis. 

iv) Interpretation of results. Their analysis shows that coral reefs around Singapore are the 
most stressed, however this is a relatively small coral reef. An alternative interpretation 
might decide that a larger reef group with a lower average LPI is at higher risk because it 
plays a greater role in the marine ecosystem at that location. How do you relate satellite 
derived indicators back to the phenomenon being studied? 

 
 
The full list of reefs and associated LPI values are available from the DMSP data download site. 
 
The issue of light pollution has become an increasingly popular cause, with a recent National 
Geographic article (Klinkenborg, 2008) and the growth of the International Dark-Sky 
Association. Concern arises from the effects on wildlife and on human societies, as people 
become increasingly disconnected from nature and the universe around them due to the blotting 
out of the night sky by inefficient lighting. Night-time light data will be an important way to 
monitor where night skies are becoming more polluted by increases in lighting, or where there are 
declines in light pollution due to economic factors or improvements in light direction and 
efficiency.  
 
 
 
4.6.  Disaster Management 
 
The observation of light (or its absence) offers the potential to monitor urban areas after in the 
wake of a disaster or fires in rural areas, Damage to street lights, buildings or power stations or 
power lines can all result in the lower levels of light being detected after a large-scale catastrophe 
has occurred. The following case studies highlight how DMSP-OLS data may be used to quantify 
and direct recovery. As with all optical remote sensing systems, this relies on the absence of 
cloud cover. 
 
The identification of fires from satellite imagery is facilitated due to their distinct spatial (non-
urban) and temporal features. Biomass burning can be identified in forest areas by lights which 



CIESIN Thematic Guide  Night-time Light Remote Sensing 
 

 29 

have a short temporal duration. Aside from their location, gas flares have a limited spatial extent 
and are extremely bright. Elvidge et al. (2001b) used DMSP-OLS data to assess the areal extent 
of biomass burning in Roraima, Brazil, whilst other studies have sought to establish relationships 
between the thermal properties of the fire, the rate of biomass consumption (fuel load), and 
aerosol and trace gas emissions also from satellite data (Kaufman et al. 1998). These figures are 
not currently included in estimates of CO2 emissions. 
 
Kiran Chand et al. (2006) used DMSP-OLS data to detect fires and compare it with other satellite 
based fire detection methods. Night-time light imagery can provide useful supplemental 
information for fire detection since it uses different image information (light rather than 
temperature). The enhanced sensitivity of the OLS instrument means it can a detect flame front an 
order of magnitude smaller (~ 45m2) than AVHRR or MODIS (Cahoon et al., 2000). Kiran 
Chand et al. (2006) developed a fire detection algorithm for the DMSP-OLS sensor which 
involved analyzing pixels from individual overpasses which lay outside the stable lights data set. 
These were then compared the results to those from the MODIS fire product and also from the 
Indian AWiFS satellite, which is similar in specification to Landsat (multispectal, 56m 
resolution). Good agreement (98%) was found between DMSP and the other satellite based 
measurements, when comparing detected fires with burnt areas. The use of night-time imaging 
for fire detection provides a valuable contribution to satellite based fire detection in that it helps 
the identification of the most destructive fires; namely those which extend from one day to the 
next and are thus detectable at night.   
 
A number of studies have examined the use of night-time lights to assess affected areas in disaster 
situations. As with fire detection, the basis of the method involves the comparison of a single 
overpass with the longterm known presence of lights. Figure 13 shows the extent of light 
disruption in Mississippi and Louisiana following hurricane Katrina in September 2005. 

 

 
Figure 13. Affected area (show in red) of blacked out lights during hurricane Katrina with the 2004 
Annual Composite vs. August 30, 2005 local time on the left and the 2004 Annual Composite vs. Sept. 
11th local time on the right.  
.  
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Kohiyama et al (2004) described how DMSP-OLS data is used in a disaster information system to 
provide near-real time early damaged area estimation. Using either two or a time-series of 
images, they applied significance tests based on the observed lights compared to the lights prior 
to the disaster event. The assumption used is that under ‘normal’ conditions the changes in 
brightness of city lights follow a Gaussian distribution. Their system EDES (Early Damaged-
Area Estimation System) is currently the only known operational use of night-time light imagery 
for disaster assessment.   
 
De Souza-Filho et al., (2004) monitored Brazil’s energy crisis in 2001 with DMPS-OLS data. 
Using data collected in 2000 and 2001, they compared a dip in Electrical output over the Federal 
District in Brazil 2001 with a changes in brightness from the previous year, For this limited study 
they found good agreement with a coincident drop in energy consumption and brightness of 
around 20%. 
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5. Other sources of current and future night-time light 
data 

 
 
The DMSP-OLS sensor is currently the only space borne sensor imaging settlements at night on a 
consistent and regular basis. However, there are other means of acquiring night-time imagery 
over cities. This section deals with three other attempts to take imagery of cities at night. The first 
is from the astronauts aboard the International Space Station, who achieve stunning results using 
a handheld camera looking out of the portholes. Secondly, results are reported from dedicated 
airborne missions flown by NASA using both low light imagers and hyperspectral imagery. The 
results of these experiments inform the third and final section of this guide, namely the desired 
attributes for a future mission to capture night-time imagery over cities. This section will discuss 
the typical trade-offs all remote sensing satellites face: period of return, wavebands, spatial 
resolution in the context of a proposed mission to continue imaging our urban environments at 
night. 
 
 
5.1.  Astronaut photography 
 
The only other space borne source of night-time light imagery comes from the astronauts aboard 
the International Space Station (ISS). Using a handheld camera Kodak DSC 760 camera, it has 
been possible to generate some stunning views of cities at night. All crews have attempted night-
time light photography over cities at night, however the results are variable and often produced 
blurred city light imagery. This was substantially improved thanks to a tracking device built out 
of equipment on the ISS by one crew member, Don Petit. He practiced several hours to get the 
quality of imagery available from ISS006. Unfortunately, since this tracker takes a long time to 
learn to use, subsequent crews have not reassembled it (Stephanov, 2006). 
 
Astronaut satellite imagery can be accessed from their gateway to astronaut photography (NASA, 
2007). The crispest images are from collection ISS006, when Don Petit was flying aboard the 
ISS. There are hundreds images of cities at night from every region in the world. A searchable 
file of this collection is available here. 
 
Nonetheless, requests for imagery can be made. However, there are a number of uncontrolled 
variables which affect dedicated image acquisition. These include the astronauts' awake period 
(typically 6:00-21:30 GMT) during which time they can obtain imagery, the precessing nature of 
the ISS orbit that governs which areas of the Earth are visible at a given time and cloud cover 
over the target area. Essentially, we would have to wait until these conditions were optimal before 
attempting to acquire useful images. The astronauts themselves would also need some training 
time, as their usual targets are acquired with full solar illumination. 
 
Further drawbacks to astronaut imagery include. 
 

• There is no precise geolocation information beyond the centre coordinates to a half 
decimal degree precision.  

• The images are taken by hand 
• There is no consistent spatial resolution to the imagery (estimated to be 6m/pixel) 
• Brightness differences can only be interpreted in a qualitative sense. 
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However, when viewed in comparison to the DMSP-OLS sensor one can instantly see the detail, 
which the OLS sensor is heavily obscuring. Much research has been conducted over the Las 
Vegas area. In the two panels (Figure 14) we see the DMSP-OLS image of Las Vegas from the 
2003 with an image taken from the ISS. We see the strip is clearly visible and very bright, as are 
major highways, whilst the rectilinear layout of the city is also clearly identifiable. 
 
.  

 
 

Figure 14. Comparison of DMSP-OLS average DN image for 2003 over Las Vegas (left) and one 
taken from the International Space Station on April 7th 2003 at 9.13pm local time (right: Image 
courtesy of NASA-JSC). The black box indicates the estimated extent of the ISS image in the OLS 
scene. 
 
 
Nonetheless, it is possible for skilled remote sensing analysts to use this imagery should sufficient 
tie points be established with other remote sensing/aerial photograph or map data to identify 
ground locations and warp the image to other data sources. The author has investigated its use for 
disaster response management in the aftermath of hurricane Katrina in 2005. This was 
unsuccessful primarily due to the absence of cloud free overpasses of New Orleans and the time 
needed for the crew to familiarize themselves with the tracking device. 
 
 
5.2. Dedicated airborne missions 
 
In the absence of space borne sensors, researchers have used sensors mounted on aircraft to fly 
high altitude missions. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is one 
such sensor that may be used to acquire high-resolution data over individual cities at night. The 
AVIRIS sensor is a hyperspectral imaging system that senses in 224 very narrow bands (~10nm) 
from 0.41-2.45 µm. It is designed to fly onboard NASA’s U2 aircraft where, at an altitude of 
20km, it can image 20m pixels over a 10km wide swath (Porter and Enmark, 1987). This 
additional data source offers not only the advantage of an enhanced spatial resolution, but also of 
enhanced spectral resolution too. AVIRIS data could address this issue. A test flight over Las 
Vegas in 1998 suggested that there are distinctive spectral signatures over the city (Elvidge and 
Jansen, 1999; Doll, 2003). Combining these two data sources would be of use to help understand 
what the DMSP-OLS data is really showing at the small scale, and therefore aid the assumptions 
one makes in macro-scale models using nighttime imagery. There are various types of lighting 
used in cities. Each has distinct spectral characteristics depending on the element used. 
Commonly used types of high intensity discharge lights are high pressure sodium used for street 
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lights, mercury vapour and metal halide used in lighting car-parks and sports stadiums. Mapping 
spectral patterns over cities could help to identify patterns of residential, commercial and 
industrial land-use (Elvidge and Jansen, 1999). This could be one way of filtering out the 
population component if concerned with assessing areas of high economic activity.  
 
More recently, imagery has been taken over Las Vegas as part of specification identification 
mission for proposing a new night-time light satellite. Figure 15 shows a scene taken over the 
main strip in Las Vegas and compares it to conventional daytime high resolution satellite data. 
The spatial resolution is around 1.5m for the night-time imagery. Individual lamps can be seen in 
parking lots behind the Monte Carlo and Alladin hotels. Dark areas include golf courses and the 
airport in the bottom right, the main runway isn’t lit although the aircraft stands are illuminated. 
The Luxor hotel is famous for a bight beam of light projected out through the top of the pyramid 
causing the sensor to saturate in this location. At this high resolution it is clear that outline of 
many distinctively shaped buildings in the area due to lighting used to illuminate their façades. 
 

     
 
Figure 15. Comparison of Las Vegas strip view from night-time ER-2 plane and the corresponding 
daytime scene.  
 
 
Airborne data provides a means for taking imagery at a high spatial resolution with high quality 
metadata concerning the camera model, calibration and geolocation of the imagery than would be 
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available with astronaut imagery. The drawback is however, that it is costly to the user to obtain 
and little to none of it is publicly available. Samples of Hyspectral AVIRIS imagery together with 
samples of night-time Landsat imagery is available from NOAA-NGDC. See the Other Night-
time Data section of the DMSP Data Download in the References. 
 
 
5.3. Nightsat Mission 
 
Given these recent developments and experiments with higher resolution airborne remote sensing 
and our existing knowledge from working with the DMSP-OLS instrument, what would be the 
desired set of attributes for a new dedicated night-time light sensor? 
 
A proposal submitted to NASA has outlined these parameters. Many of the orbital parameters are 
a function of choosing the spatial resolution and swath of the sensor. Titled Nightsat, the 
instrument would have the following characteristics. 
 
The spatial resolution is recommended to be 25-50m. Based on experiments resampling the 1.5m 
Cirrus imagery, this was determined to be the maximum resolution permissible for delineating 
primary night-time lighting patterns. At this resolution and a swath of 80-90km, there would be a 
revisit period of ~30 days, at the equator yielding 12 views per year. The overpass pass time 
would be 9.30pm local time to provide the temporal consistency for change detection. As with 
DMSP, cloud and fire screening would be done with a separate thermal band. A key feature 
would include on-board calibration or a repeatable procedure for calibrating sensor data to 
radiance units and allow comparisons over time and between future sensors. 
 
There are essentially three types of lights which are detected: Flames such as lanterns and gas 
flares; Incandescent, where light is produced from a heated filament; and vapour lamps where 
lighting is generated by electrically charged gasses such as mercury, sodium and neon. 
Incandescent and vapour lamps are most common for outdoor lighting. Each type of light has a 
distinctive spectral signature (Figure 16), which would be detectable if the new satellite had four 
band multispectral sensor to define the predominant type or mixture of lighting present. 
 

  
 
Figure  16. Field spectra of four different types of nocturnal lighting.  
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The ability to distinguish different types of lighting will have benefit for a number of 
applications. Classifying urban landuse the use of different types of light is one promising area, 
especially as lighting practices tend to be homogeneously determined at some municipal, regional 
or even national scale. 
 
For ecological applications, the presence of certain wavelengths determines whether species will 
respond to lights or not.  Sea turtle nesting and seafinding behaviors are not affected by lights 
with only yellow wavelengths (Lohman et al. 1997, Salmon 2006), whilst salamanders and some 
birds show difficulty to navigate under certain lighting conditions. some salamanders are unable 
to navigate properly under yellow light (Wise and Buchanan 2006; Wiltschko and Wiltschko 
2002), while insects are attracted to short, ultraviolet light (Frank 1988). 
 
Beyond this, high resolution night-time light imagery has the potential to answer social questions 
hitherto unconsidered in any scientific manner. For instance, one could test the widespread belief 
that nighttime lighting deters crime. Very few studies have been able to evaluate the effectiveness 
of lighting in varying settings and over time (Weeks, 2003), but combining night-time light data 
with data on crime and socio-economic and demographic characteristics could inform policy 
makers and police forces on efficient use of their resources. 
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Glossary of Terms 
 
 
DMSP-OLS - Defense Meteorological Satellite Program (DMSP) Operating Linescan System 
(OLS). The OLS is the sensor which detects lights at night. It flies aboard the DMSP platform. 
Multiple sensors can fly on one platform. 
 
DN – Digital Number, a positive integer assigned to response of a sensor relative to the intensity 
of the signal received by the sensor. Depending on the number of bits assigned to the quantifying 
sensor response this is usually 6-bit 26 = 64 (0-63) or 8-bit 28 = 256 (0-255). The radiance 
calibrated night-time lights have 8-bit quantization, the average DN product has 6-bit 
quantization.   
 
Gain - The term for the amplification applied to a detected signal at the sensor. Commonly 
expressed as the ratio of the signal output to the system input. Expressed in decibels (dB), the log 
of amplification. 
 
GDP - Gross Domestic Product. The market value of all final goods and services produced within 
a country in a given period of time. There are a number of ways this can be calculated, which 
theoretically give the same value. For international comparisions the purchasing power parity 
(PPP) measure is used as opposed to the market exchange rate (MER) 
 
GHG - Greenhouse Gas Emissions. The term applied to those gases in the Earth’s atmosphere 
which contribute to the greenhouse effect, which are emitted through human activity. Naturally 
occurring greenhouse gases include water vapor, carbon dioxide, methane, nitrous oxide, and 
ozone. Certain human activities, however, add to the levels of many of these naturally occurring 
gases. 
 
NOAA - National Oceanic and Atmospheric Administration. Organisation responsible for the 
DMSP satellite series. 
 
NGDC - National Geophysical Data Center, Division of NOAA based in Boulder, Colorado. 
 
Pixel Saturation - When a sensor detects a signal which exceeds the dynamic range of a sensor, 
the sensor records the maximum value. The pixel under considerations is said to be saturated. 
There is no way of determining the strength of the signal once saturation occurs 
 
PPP - Purchasing Power Parity. The standard for international comparisons of GDP. The PPP 
attempts to account for market exchange rate distortions by taking the drawing comparisons of 
prices from a basket of commonly used equivalent goods.  
 
Scotobiology - The study of biology as directly and specifically affected by darkness. (scoto from 
the Greek, darkness).  
 
Specular Reflectance - That component of the light reflecting from a surface caused by its shiny 
or glossy nature. Shiny surfaces reflect light striking them in clearly defined angles of incidence, 
resulting in “hot spots” corresponding to the direction of the light sources providing the 
illumination. 
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Total DN – The sum of all digital numbers in a given region. In the context of night-time lights 
(and the absence of radiometric calibration), total DN is used as a proxy for total brightness of a 
region. 
 
 

Figure Credits 
 
Figure 1. Source: Air Force Research Laboratory Space Vehicles Directorate.  
 
Figure 2. Images created by Chris Doll. Derived from three different data sets (from left to right: 
Stable Lights, Radiance Calibrated, and Average DN) derived from Version 2 DMSP-OLS 
Nighttime Lights Time Series. 
 
Figure 3. Images created by Chris Doll using data set:  Version 2 DMSP-OLS Nighttime Lights 
Time Series. F15. 2002.  
 
Figure 4. Images created by Chris Doll using data set: Version 2 DMSP-OLS Nighttime Lights 
Time Series. F10. 1992; F12. 1998; F15. 2003 
 
Figure 5. Graph created by Chris Doll using data sets: Version 2 DMSP-OLS Nighttime Lights 
Time Series. F12. 1997; Version 2 DMSP-OLS Nighttime Lights Time Series. F14. 1997. 
 
Figure 6. Graph created by Chris Doll using data sets: Version 2 DMSP-OLS Nighttime Lights 
Time Series. F12. 1997; Version 2 DMSP-OLS Nighttime Lights Time Series. F14. 1997. 
 
Figure 7. Images created by Chris Doll using data sets:  Version 2 DMSP-OLS Nighttime Lights 
Time Series. F12. 1994; Version 2 DMSP-OLS Nighttime Lights Time Series. F12. 1995; 
Version 2 DMSP-OLS Nighttime Lights Time Series. F12. 1996; Version 2 DMSP-OLS 
Nighttime Lights Time Series. F12. 1997; Version 2 DMSP-OLS Nighttime Lights Time Series. 
F12. 1998; Version 2 DMSP-OLS Nighttime Lights Time Series. F12. 1999. 
 
Figure 8. Images created by Chris Doll using data set:  Polygon outlines of 1994-95 Stable lights, 
with ESRI GIS national boundary layer and city points from World Urban Centers Database held 
by the University of Iowa’s Center for Global and Regional Environmental Research. Image 
reproduced from Chris Doll (dissertation 2003). Also need to reference dissertation in the 
Reference section. 
 
Figure 9. Graph created by Chris Doll using World Urban Centers Database held by the 
University of Iowa’s Center for Global and Regional Environmental Research, supplemental 
population data from Philip’s Geographical Digest 1998-99, plotted against areas derived from 
the 1994-95 Stable lights data product over Europe.  Graph reproduced from Chris Doll 
(dissertation 2003). Also need to reference dissertation in the Reference section. 
 
Figure 10.  Images created by Chris Doll using data set:  1996-97 Radiance Calibrated DMSP-
OLS Dataset, graph constructed with values from this dataset and sub-national GDP data for 1997 
from Eurostat. Image reproduced from Chris Doll (dissertation 2003).  
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Figure 11.  Image created by Chris Doll using map created from 1994-95 DMSP-OLS dataset and 
CDIAC gridded CO2 emissions (ndp058).data set:  DMSP-OLS ? Image reproduced from Chris 
Doll (dissertation 2003). Also need to reference dissertation in the Reference section. 
 
Figure 12. Images reproduced from MANTLE EPROS 2003 Presentation available from: 
http://forum.europa.eu.int/Public/irc/dsis/radstat/library?l=/epros-
2004/presentations_previous&vm=detailed&sb=Title 
 
Figure 13. Image and data processing by NOAA's National Geophysical Data Center, Earth 
Observation Group, Boulder, CO. http://www.ngdc.noaa.gov/dmsp 
DMSP data collected by US Air Force Weather Agency. 
 
Figure 14. Image on left created by Chris Doll using data sets: Version 2 DMSP-OLS Nighttime 
Lights Time Series. F15. 2003. Photograph on right from NASA Johnson Space Center database 
of astronaut photography.  
 
Figure 15. Remote sensing image on left from Chris Elvidge. Image on right from Google Maps.  
 
Figure 16. From Elvidge et al. 2007b.   
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