Python Scripting for ArcGIS

Paul Zandbergen
Department of Geography
University of New Mexico

Outline of Topics

Introduction

— Examples, Python and ArcGlIS, Python versions
Fundamentals of geoprocessing in ArcGIS
Python language fundamentals

— Where to run Python code

— Data types: numbers, strings, lists

— Functions and modules

— Controlling workflow
ArcPy: Geoprocessing using Python

— Using tools, functions, classes

— Describing data, listing data, working with lists
Creating custom tools

— Script tools, tool parameters

Resources

Workshop Materials Posted

SEARCH

Dr. Paul Zandbergen

HOME BIC TEACHING RESEARCH PUBLICATION S PRESENTATION 5 WORSKHOP S TOOLS & DATA TEAM CONTACT

worskhops

Workshops at the 2011 Crime Mapping Conference

Crime Hotspot Mapping and Analysis

Presentation Slides

Python Scripting for ArcGIS _

Presentation Slides
Exercises Instructions } posted untll October 24

Exercises Data

PythonWin Editor for Python 2.6

http://www.paulzandbergen.com/workshops

Forthcoming Book

Python Scripting for ArcGIS
Esri Press

Sometime in 2012
Updated for ArcGIS 10.1

Sample exercises posted (for 10.0)

Introduction

Prior Knowledge and Experience

e Using ArcGIS 9.3 or 10.07
— Workshop is for 10.0

* Prior Python experience?

— I’m not assuming any

e Other programming experience?

— I’m not assuming any

Example 1
e Script to copy all shapefiles in a folder into a geodatabase

import arcpy
from arcpy import env
env.overwriteOutput = True
env.workspace = ''c:/workshop/ex01"
fclist = arcpy.ListFeatureClasses()
for fc 1n fclist:
fcdesc = arcpy.Describe(fc)
arcpy.CopyFeatures_management(fc, ''c:/workshop/ex01/study.mdb/"
+ fcdesc.basename)

Example 2

e Script tool to generate a k-nearest neighbor table
 Runs an existing ArcGIS tool multiple times, writes the result

import arcpy

from arcpy Import env
env.overwriteoutput = True

infc = arcpy.GetParameterAsText(0)
output = arcpy.GetParameterAsText(1l)

k = arcpy.GetParameter(2)
n =1
T = open(output, "w')

while n <= k:
result = arcpy.CalculateDistanceBand stats(infc, n)
f.write(str(n) + " " + str(result[1l])+ "\n"")
n=n-+1

f.close()

Example 3

e Script tool to run Huff model

e Sophisticated analysis not available in ArcGIS

< Huff Model

@ Store Locations

4 Store Mame Field

& Store Attractiveness Field

@ Qutput Folder

& Dutput Feature Class Mame

@ Study Area

¥ Distance Calculation
¥ Huff Model Dptions
¥ Origin Locations and Sales Potential

¥ Potential Store Modeling

Inputs

Outputs

*Stores [__|Study Area Origins

Meodel Fermula

u.d?
3 (U.d?)

cs

P probability of consumer at
e |ocation ¢ selecting store s

U, attractiveness (utility) of store s’

O

] [Cancel

] [Environments...] | Show Help ==

d,, distance between ¢ and s

B Distance Friction Coefficient

Probabilities

Probability Surface

Store 1

- High

- Low

Sales Potential

| Store 1

Market Areas (from Origins)

| Store 2
Store 3

Market Areas (from Surfac

Store 1
| Store 2
Store 3

Example 3

HuffModel. py - C:\Paul\Python\Examples\MarketAnalysis Toolbox_update01262010\criptiHuf... [= |[B][X]
File Edit Format Run Options ‘Windows Help

HuffModel.py
Created: 4/13/2007 by Drew Flater
Uzage: Creating probability-hased trade areaz for retail atores

Import avstem modules
import 2ys, String, arcgisscripting, oz, traceback, shutil, re

Create the Geoprocessor ohiject
gp = arcgisscripting.create (93)

Set overwrite
gp.overwvriteoutput = 1

def AddPrintHMessage (=g, Severity):
print mag
if sewverity == 0: gp.AddMessage (=g)
2lif severity == 1: gp.iddWarning (mag)
2lif sewverity == 2: gp.AiddError (mag)

Start traceback Try-Except statement:
Lry:

Script parameters. ..

stores = dp.getparameterastext (0)

SLOre_name = gp.getparameterastext (1)
STore_attr = gp.getparameterastext (2]
outfolder = gp.getparameterastext (3]
fo_name = gp.getparameterastext (4)
studyarea = dgp.getparameterastext ()

blockgroups = gp.getparameterastext (6] -
Lm: 1Col: 0

What is Python Scripting?

e Add functionality to ArcGIS
— Integrated into ArcGIS interface
— Builds upon existing functionality
— Automates repetitive tasks
— Expands analysis options

e Share new functionality
— Script tools work just like regular tools
— Can be integrated into models, tools
— Easy to share with others (free)

Why Python?

Free, open source

Object oriented

Basic scripting AND complex object-oriented programming
“Batteries included”

Embraced by geospatial community, including ESRI

Many libraries

@ python

@ python

Python Community

Advanced Search

search

ABOUT

NEWS
DOCUMENTATION
DOWNLOAD

TH#i

COMMUNITY
FOUNDATION

ks

o

r

ks

ks

o

CORE DEVELOPMENT

Help

Package Index
Quick Links (2.7.2)

» Documentation

#» Windows Installer
» Source Distribution
Quick Links (3.2.2)

» Documentation

» Windows Installer
» Source Distribution
Python Jobs

Python Merchandise
Python Wiki

Python Programming Language — Official Website

Python is a programming language that lets you work more quickly and integrate
your systems more effectively. You can learn to use Python and see almost
immediate gains in productivity and lower maintenance costs.

Python runs on Windows, Linux/Unix, Mac OS X, and has been ported to the Java and
.NET virtual machines.

Python is free to use, even for commercial products, because of its OSl-approved open
source license.

Mew to Python or choosing between Python 2 and Python 37 Read Python 2 or Python 3.

The Python Software Foundation holds the intellectual property rights behind Python,
underwrites the PyCon conference, and funds other projects in the Python community.

Read more, -or- download Python now

» PyArkansas
The 4th annual PyArkansas will be held October 22, 2011.
Published: Wed, 21 September 2011, 11:37 +0200

» PyGotham
PyGotham will be held September 16-17, 2011.

Published: Tue, 6 September 2011, 08:00 +0200

http://www.python.org

Python 3 Poll

| wish there was Python 3 support in

(enter PyPI package name)

Results
Tribon uses Python...
- [

__ joining users such as

Rackspace, Industrial Light and
Magic. AstraZeneca, Honeywell,

and many others.

ITA Software:

What they are saying...

Python and ArcGIS

 Python is the preferred scripting language for ArcGIS

1. You can run Python from within ArcGIS
— Python Window works like an interactive interpreter

2. All tools in ArcToolbox can be accessed from Python
— Import ArcPy to get full library of tools

3. Python scripts can be made into tools
— Extend functionality of ArcGIS

4. Support for other scripting languages will go away
— VBScript and JScript being replaced by Python

Python Versions and ArcGIS

Versions:
— Current version of Python is 3.2.2
— Python that works with ArcGIS 10.0 is 2.6.x
— Python that works with ArcGIS 10.1is 2.7.x
— Move to Python 3.x likely only with ArcGIS 11

ArcGIS only works with a specific version of Python:
— Use the one that comes installed with ArcGIS
— Don’t install your own version of Python

Installing Python

Remove any existing installations of Python

Install ArcGlIS 10.0
— Python 2.6.5 will be installed by default

Install a Python editor
Configure the editor to work with ArcGIS

Note: You can run different versions of Python on one
machine — however, a clean install of Python2.6.5
with ArcGIS 10.0 is recommended

Demo: Check ArcGIS and Python installation

Fundamentals of Geoprocessing
in ArcGlIS

Geoprocessing Tools

II,.-"_

Input Data

e

F.

Geoprocessing
Tool

_"\-\.\,‘.

ey

Output Data

Tool Organization

ArcToolbox

Bl ArcToolbox
@ 30 Analyst Tools
@ Analysis Tools
@ Cartography Tools
&3 Conversion Tools
% Drata Interoperability Tools
@ Data Management Tools

= ﬁ analvsis Tools
= &; Extract

i .
@ Editing Tools ;‘*’ Clip
' %, Select
% Geocoding Tools P ’
%, Split

&9 Geostatistical Analyst Tools
&3 Linear Referencing Tools
£ Mulkidimension Tools

&3 network Analyst Tools
&3 Parcel Fabric Tools

&3 samples

&3 schematics Tools

&5 server Tools

@ Spatial Analyst Tools
&3 spatial Statistics Tools
@ Tracking Analyst Tools

.{h Table Select
&y Overlay
%: Procimity
B Statistics

Tool Dialogs

EEX

& Input Features

| = &
% Clip Features

| = &
& Qutput Feature Class

| N=

#Y Tolerance (optional)

| |Feet V|

Ok] ’ Cancel] [Envirunments... l | Show Help »> |

Tool Parameters

* Parameters
— Required
— Optional

* Errors
 Warning

w Input Features

= Tolerance {optional)

alnput Features
Cimydatatlroads. shp

&Dutput Feature Class
Zidatalroads_clip.shp

Environment Settings

4% Environment Settings

Workspace

Output Coordinates

<

Processing Extent

4

XY Resolution and Tolerance

<

M Yalues

Z Yalues

<

<

Geodatabase

Geodatabase Advanced

<

b4

Fields

<

Random Mumbers

b4

Cartography

<

Coverage

<

Raster Analysis

L

Raster Storage

£

Geostatistical Analysis
¥ Terrain Dataset

¥ TIN

(04] [Cancel] [Show Help ==

Geoprocessing Options

Geoprocessing Options

General

verwrite the outputs of geoprocessing operations _
Log geoprocessing operations ko a log File

Background Processing

— Tl Notfcatin]
Appear Far how long {seconds)

Script Tool Editor/Debugoer

Editor: | | ﬂ
Debugget: | | ﬂ

ModelBuilder

\When cannecking elements, display walid parameters when mare than ane is
available,

Resulks Management

keep results vounger than: 2 Weeks w

Display | Temporary Data

Add resulks of geoprocessing operations ko the display
[]Rresults are temporary by default

O, l [Cancel

Demo: Geoprocessing Fundamentals

Running Python Code

Two ways to run Python Code

1. Using an Interactive Interpreter

— Code is executed directly line-by-line

2. By running a script
— Code saved in a .py file

— Run from within a Python editor or directly from
operating system

Where to type and run Python code?

1. Python window in ArcGIS
— Built into any ArcGIS Desktop application
— Good for testing code, very short scripts

2. Python editor
— |IDLE installed by default
— Many others, PythonWin is a good one to start
— Good for more complex code, saving scripts

Python Window in ArcGIS

»>>»> print "Hello World"
Hello World

e

Python Window in ArcGIS

Works with current map document
Interactive interpreter:

— Executes code directly line-by-line
Good for testing short code
Code can be saved
No error checking / debugging

Python Editor - IDLE

Python Shell M=E3

File Edit shel Debug Options Windows Help

Python 2.6.5 [(r265:79096, Mar 19 2010, £21:45::26) [M3C w.1500 32 bit (Intel)] on win3:
Type "copyright®™, "ocredits"™ or "license ()™ for more information.

e i e e e el e i e e e e

Perzonal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopbhack
interface. This connection iz not wiszible on any external

interface and no data iz sent to or received from the Internet.
o o i o e e ol e e e e e e e e e

IDLE 2.6.5
el

Lm: 12 Cm:4|

Python Editor - PythonWin

PythonWin
File Edit Wiew Tools window Help

DS L@ REAr2 0o L 2BRES @ P

Interactive Window

Pythontin 2.6.5 (r265: 759086, Mar 18 2010, 21:48:268) [MSC v.15200 32 bit (Intel)] on win32.
Fartions Copyright 1884-2008 Mark Hammaond - see 'Helpf&hout Pythonin' for further copyright informatian.

>»» Hello Torld

& hellowin. py

print "Hello World"®™

Scripk 'Ciidataihelowin, py' returned exit code 0

C um | oooot 2o

Python Editor

Stand-alone — outside of ArcGIS
Interactive interpreter:

— Executes code directly line-by-line

Save code as script files (.py)
Good for organizing more complex code

Demo: Running simple Python code

Python Documentation

@ python

Python Documentation

Advanced Search

search

ABOUT

NEWS
DOCUMENTATION
DOWNLOAD

TH#i

COMMUNITY
FOUNDATION

ks

o

r

ks

ks

o

CORE DEVELOPMENT

Help

Package Index
Quick Links (2.7.2)

» Documentation

#» Windows Installer
» Source Distribution
Quick Links (3.2.2)

» Documentation

» Windows Installer
» Source Distribution
Python Jobs

Python Merchandise
Python Wiki

Python Programming Language — Official Website

Python is a programming language that lets you work more quickly and integrate
your systems more effectively. You can learn to use Python and see almost
immediate gains in productivity and lower maintenance costs.

Python runs on Windows, Linux/Unix, Mac OS X, and has been ported to the Java and
.NET virtual machines.

Python is free to use, even for commercial products, because of its OSl-approved open
source license.

Mew to Python or choosing between Python 2 and Python 37 Read Python 2 or Python 3.

The Python Software Foundation holds the intellectual property rights behind Python,
underwrites the PyCon conference, and funds other projects in the Python community.

Read more, -or- download Python now

» PyArkansas
The 4th annual PyArkansas will be held October 22, 2011.
Published: Wed, 21 September 2011, 11:37 +0200

» PyGotham
PyGotham will be held September 16-17, 2011.

Published: Tue, 6 September 2011, 08:00 +0200

http://www.python.org

Python 3 Poll

| wish there was Python 3 support in

(enter PyPI package name)

Results

. joining users such as
Rackspace, Industrial Light and
Magic. AstraZeneca, Honeywell,

and many others.

ITA Software:

Tribon uses Python...

What they are saying...

Python Documentation

[] [] e
Version specific!
'gl F"_',"thDﬂ v2_ 6.7 documentation » modules | index

Download

Python v2.6.7 documentation
Download these documents
Welcomel This is the documentation for Python 2.6.7, last updated Jun 03, 2011.

Docs for other versions
Parts of the documentation:

PEP Ir
Beginne
Boo
Audio
Other D

Report a Bug

Quick search

] oo

ch terms or a module,
or function name.

What's new in Python 2.67

or all "What's new" documents since 2.0

Tutorial
start here

Using Python

how fo use Python on different platforms

Library Reference
keep this under your pillaw

Language Reference
describes syntax and language elements

Python HOWTOs

in-depth documents on specific topics

http://docs.python.org

Extending and Embedding

futorial for G/AC++ programmers

Python/C API

reference for C/C++ programmers

Installing Python Modules

information for installers & sys-admins

Distributing Python Modules

sharing modules with others

Documenting Python
guide for documentation authors

FAQs

frequently asked gquestions (with answers!)

Python Beginners Guide

@, python

FrRONTPAGE
RECENTCHANGES
FINDPAGE
HELPCONTENTS
BEGINNERSGUIDE
Page

» |mmutable Page
» |nfo

#» Aftachments

More Actions:
User

» Login

B

H

e

Hr

Ed

Search titles | text

» BeginnersGuide

» BeginnersGuide

Beginner's Guide to Python

New to programming? Python is free, and easy to learn if you know where to start! This guide will help you to get
started quickly.

Chinese Translation
New to Python?
Read BeginnersGuide/Overview for a short explanation of what Python is.
Getting Python

Next, install the Python interpreter on your computer. This is the program that reads Python programs and carries
out their instructions; you need it before you can do any Python programming.

There are currently two major versions of Python available: Python 2 and Python 3. The Python2orPython3 page
provides advice on how to decide which one will best suit your needs. At the time of writing (21 Jun 2010), the rest
of this page assumes you've decided to use Python 2.

See BeginnersGuide/Download for instructions for downloading the correct version of Python.

At some stage, you'll want to edit and save your program code. Take a look at HowToEditPythonCode for some
advice and recommendations.

http://wiki.python.org/moin/BeginnersGuide

Python Books

V i 'f. '
ersion speciric:
THE EXPERT'S VOICE® IN GF CE Copyrighted Material Powerful Objectotmbmidsd P ranming W

uuuuuuuuuuuu

SOURCE CODE

FROM THE BOOK

Beginning P th OIl Learning
Python otoatymmins

From Novice to Professional

SECOND EDITION

Magnus Lie Hetland

Apress®

O'REILLY" Mark Ltz

Copyrighted Material

None of these books including anything on ArcGIS or geoprocessing!

Python Language Fundamentals

Python Data Types

Number (integer and float)
String

List

Tuple

Dictionary

Strings, lists and tuples are sequences
Strings, numbers and tuples are immutable
List and dictionaries are mutable

Numbers

* Integers
— Whole number, i.e. no decimals
—e.g.-34

* Floats

— Decimal point
— e.g.-34.8307

Numerical Operators

Operator Description Integer Floating-point
Example Result Example Result
¥ Multiplication 9*2 18 9*2.0 18.0
/ Division 9/2 4 9/2.0 4.5
% Modulus 9% 2 1 9% 2.0 1.0
+ Addition 9+2 11 9+2.0 11.0

- Subtraction 9-2 7 9-20 7.0

Demo: Numerical Operators

Strings

e A set of characters surrounded by quotes is called a
string literal

 To create a string variable, assign a string literal to it

>>> mytext = "Crime hotspot maps are cool.™
>>> print mytext
Crime hotspot maps are cool.

Quotes in Python

* In Python single and double quotes are the same
e "NIJ" isthesameas "NIJ*

>>> print "'l said: "Let"s go!™"™

e Quotes in Python are straight-up
e "text' or "text", not ‘‘text’ or “text”’

e Be aware of copy/paste and auto-formatting

Variables

* Python scripts use variables to store information

 To work with variables use an assignment statement

>>> X = 17
>>S> X * 2

34

Variables

e Python uses dynamic assignment

>>> X = 17
>>> type(X)
<type "Int°">
>>> X = "GIS™
>>> type(x)

<type "str-°>

e No need to declare variables
e Value defines the type

Variable Names

e Rules
— Letters, digits and underscores

— Cannot start with a digit
— Don’t use keywords (print, import, etc.)

e Recommendations
— Be descriptive (count instead of C)
— Keep it short (count instead of count _of records)

— Follow convention: all lowercase, use underscores

Statement and Expressions

A Python expression is a value

>>> 2 * 17
34

A Python statement is an instruction to do something

>>> X = 2 * 17

Working with Strings

 Concatenate strings

>>> X — IIGII
>>> y — lllll

>>> 7z = ""S"
>>> print X +y + z
GIS

Converting to String

>>> temp = 100
>>> print ""The temperature i1s ' + temp + ' degrees"
TypeError: cannot concatenate "str® and "iInt" objects

>>print ""The temperature 1s " + str(temp) + ' degrees"

e Converting the value of a variable from one type to another is
known as casting

Lists

e A Python listis an ordered set of items

e The list of items is surrounded by square brackets [], and the
items are separated by commas (,)

e |tems can consist of numbers, strings and other data types

mylist = [1, 2, 4, 8, 16, 32]
mywords ["jpg", "‘bmp", "tif']

e Lists are very widely used in geoprocessing:

— e.g. list of feature classes, list of records, list of fields, etc.

Python Functions

* A function carries out a certain action
e Python has many built-in functions

<function>(<arguments>)

>> pow(2,3)
8

e Using a function is referred to as calling a function
e Additional functions can be accessed using modules

Python Methods

e A method is a function that is closely coupled to some object

<object>.<method>(<arguments>)

>>> topic = "Crime Mapping"
>>> topic.count('i')
2

e Many of Python’s data types have methods

String Indexing

e Python strings have an index positioning system

>>> mystring = ""Crime Mapping"
>>> mystring[0]

ICI

>>> mystring[-1]

g

e Strings can be sliced into smaller strings using slicing

>>> mystring[0:5]
“Crime”

Working with List

 Python lists have an index positioning system

>>> crimes = ["arson", "burglary", "'robbery"]
>>> cities[1]
"burglary”

e There are many list methods

>>> crimes.append(*"homicide™)

>>> crimes.remove(‘'arson')

>>> Ccrimes

[“burglary®, “robbery®, "homicide"]

Working with Pathnames

e Pathnames are critical when writing scripts:
— Example workspace: c:\data\results
— Example shapefile: c:\data\results\streams.shp

e In Python a backslash (\) is an escape character

e Pathnames in Python should therefore look like one
of the following

"c:/data" <

"c:\\data"
r'‘c:\data" (raw string)

Python Modules

e Modules are like extensions that can be imported into Python
to extend its capabilities

>>> Import time

e Atypical module contains a number of specialized functions
which can be called once the module has been imported

<module>_.<function>

>>> time. localtime()

Conditional Statements

e Branching can be used to control workflow

import random
X = random.randint(0,6)
print Xx

if X == 6: ¢umm

print = "“You win!“

1

e Syntax: keyword 1T, followed by a condition, followed by (:)

Indentation in Python

ndented code is referred to as a block
Use tabs or spaces — be consistent

Recommended: 4 spaces

Tip: be careful with copy/paste from other
applications

More Conditional Statements

e Useofelif andelseisoptional

import random
X = random.randint(0,6)

print X
It x ==

print "You win!"
elif x == 5:

print "Try again!"
else:

print "You lose!"

Loop Structures: While

e [oop structures allow you to repeat a certain part of your
code

« Awhileloop repeats until a particular condition is reached

1 =0

while 1 <= 10:
print 1
1 += 1

e The whi le statement uses a sentry variable in the exit
condition

Loop Structures: For

A Tor loop repeats a block of code for each element of a
sequence

myl iSt — [lIAlI’ llBll’ llCIl’ IIDII]
for letter 1n mylist:
print letter

* |nthe example, letter is the name of a variable and for each
iteration of the loop this varaible is assigned a different value

ArcPy: Geoprocessing using Python

What is ArcPy?

e ArcPy was introduced with ArcGIS 10.0

e ArcPy is a collection of modules, classes and
functions which give access to all the geoprocessing
tools in ArcGIS from within Python

 Most geoprocessing scripts will start with:
Import arcpy

* Note: ArcPy replaces the older arcgisscripting
module

Setting Current Workspace

e After importing ArcPy, most scripts start with setting a
workspace to retrieve and store files

Import arcpy
arcpy.env.workspace = "c:/workshop"

* Inthe code above env is a class and workspace is a
property of this class

arcpy.<class>.<property>

Using Tools

e ArcPy gives you access to all tools in ArcToolbox
e All tools are provided as functions

arcpy.<toolname toolboxalras>(<parameters>)

e Example:

import arcpy
arcpy.env.workspace - '‘c:/data"
arcpy.Clip_analysis('streams.shp', "study.shp'™, "result.shp')

Tool Parameters

e A good understanding of tool parameters is essential

e Parameters have properties:
— Name
— Type (feature class, integer, etc.)
— Direction (input or output)
— Required or optional

e Example: Clip tool

in_features The features to be dipped. Feature Layver
clip_features The features used to clip the input features, Feature Layer
out_feature_class The feature class to be created, Feature Class

cluster_tolerance The minimum distance separating all feature coordinates (nodes and Lingar unit

(Cptional) vertices) as well as the distance a coordinate can move in % or v {or
both). Set the value to be higher for data with less coordinate
accuracy and lower for data with extremely high accuracy.

Tool Syntax

I d H I . » Input Features
Tool dialog: | = g
w Clip Features
| = g
w» Dubput Feature Class
=]
#¥ Tolerance (optional)
Feet w

[o] 4] [Cancel] [Environments...] | Show Help == |

Python syntax: Clip_analysis(in_features, clip_features,
out_feature class,
{cluster_tolerance})

Example: Clip_analysis(''streams.shp™, "study.shp',
“"result.shp™)

Optional Parameters

 Required tool parameters are listed first
e Optional tool parameters can be left out

— But what if some need to be set?

Buffer_analysis (in_features, out_ feature class
buffer_distance or Tield, {line_side}, {line _end type},
{dissolve option}, {dissolve fTield})

arcpy.Buffer_analysis(''roads', "buffer'™, 100 METERS"™, "',
., YLIST™, Code™)

arcpy.Buffer_analysis('roads", "buffer', 100 METERS",
dissolve option=LIST, dissolve field=Code)

Hard-coded Parameters

 Consider the example

import arcpy
arcpy.env.workspace = '‘c:/data"
arcpy.Clip_analysis('streams.shp', "study.shp', "result.shp')

* How can we make this code more usable?

Using Variables for Parameters

import arcpy

arcpy.env.workspace = '"'c:/data"
infc = "streams.shp™
clipfc = "study.shp"
outfc = "result.shp”

arcpy.Clip _analysis(infc, clipfc, outfc)

Variables Provided by a User

import arcpy
iInfc = arcpy.GetParameterAsText(0)

clipfc = arcpy.GetParameterAsText(1l)
outfc = arcpy.GetParameterAsText(2)
arcpy.Clip_analysis(infc, clipfc, outfc)

Result Objects

* ArcPy returns the output of a tool as a Result object

import arcpy
arcpy.env.workspace = '‘c:/data"
myresult = arcpy.Clip_analysis(''streams.shp*,"study.shp","result.shp™™)

print myresult

e This will print the path to the output dataset

c:/data/result.shp

Multiple Operations using Result Objects

e Result objects can be used as the input into another
function

import arcpy

arcpy.env.workspace = '‘c:/data/study.gdb"

buffer = arcpy.Buffer_analysis('str',"str buf","100 METERS')
count = arcpy.GetCount_management(buffer)

print count

* This allows complex geoprocessing operations

ArcPy Classes

e Some tool parameters are complicated/detailed

— e.g. coordinate system

* ArcPy classes are used to work with these parameters
— Classes are used to create objects
— Classes have properties and methods

* General syntax

arcpy .<classname>(<parameters>)

ArcPy Classes: Example

 The following is an example of the contents of a .prj file

B streams.prj - Notepad E@E|

File Edit Format ‘iew Help

PROICS["MAD_1983_stateplane_Florida_East_FIPS_0501_Feet",GEOGCS["GCS
_Morth_american_1983", pATUM["D_Morth_american_19%83", SPHEROID["GRS_15
BO",B378L37.0,25958,.257222201]], PRIMEM["Greenwich", 0. 0], UNIT["Degree",
0.0174532025190433]], PROJECTION]"Transverse_Mercator"], PARAMETER["Fa
lse_Easting", 656166, 6066666665], PARAMETER ["False_nNorthing", 0. 0], PARA
METER["Central_Meridian",-581.0], PARAMETER["Scale_Factor', 0.995541174
4705882], PARAMETER ["Latitude_of _origin®,24.33333333333333], UNIT["Foo
t_s", 0.3048006006012152]]

e To avoid having to work with this actual string, we can use a
SpatialReference class

ArcPy Classes: Example

 The following example creates a spatial reference object
based on an existing .prj file - properties of this object can

then be used

import arcpy

prjyfile = "c:/data/streams.prj"

spatialref = arcpy.SpatialReference(prjfile)
myref = spatialRef._name

print myRef

e This will print

NAD 1983 StatePlane Florida East FIPS 0901 Feet

ArcPy Classes: Example

 The following example creates a spatial reference
object and use this to define the coordinate system
of a new feature class

import arcpy

out path = "c:/data"

out _name = "lines.shp"

prjfile = "c:/data/streams.prj"

spatialref = arcpy.SpatialReference(prjfile)

arcpy.CreateFeatureclass management(out_path, out name,
“"POLYLINE™, ", ", ', spatialref)

ArcPy Functions

e All geoprocessing tools are ArcPy functions
e Additional ArcPy functions:

— listing data

— Retrieving and setting properties

— Many more...

* General syntax

arcpy.<functionname>(<arguments>)

ArcPy Functions

Cursors

Describing data

Environment and settings
Fields

General

General data functions
Getting and setting parameters
Licensing and installation
Listing data

Messaging and error handling
Progress dialog

Tools and toolboxes

Describing and Listing Data

Describing Data

e The Describe function is used to determine properties of dataset
 General syntax

import arcpy
<variable> = arcpy.Describe(<input dataset>)

e Example:
import arcpy

desc = arcpy.Describe(''c:/data/streams.shp™)
print desc.shapeType

Describing Data: Example

import arcpy

arcpy.env.workspace = ''c:/data"
infc = "'streams.shp™

clipfc = "study.shp"

outfc = "'streams _clip.shp”

desc arcpy.Describe(clipfc)

type = desc.shapeType
1T type == "Polygon™:
arcpy.Clip_analysis(infc, clipfc, outfc)
else:
print "The clip features are not polygons.™

Listing Data

e Listing data is very common

e Several different list functions in ArcPy
— ListFields
— ListIndexes
— ListDataset
— ListFeatureClasses
— ListFiles
— ListRasters
— ListTables
— ListWorkspaces
— ListVersions

e Similar logic:
— Create a list
— Iterate over the list using a for loop

Listing Feature Classes

e The ListFeatureClasses function returns a list of
feature classes in the current workspace

 General syntax:

ListFeatureClasses ({wild card}, {feature_ type},
{feature_dataset})

e Example:

import arcpy

from arcpy import env
env.workspace = ''c:/data"

fclist = arcpy.ListFeatureClasses()

Listing Feature Classes
* No filtering:
fclist = arcpy.ListFeatureClasses()

e Filtering based on wild card

fclist = arcpy.ListFeatureClasses("'w*")

* Filtering based on feature type

fclist = arcpy.ListFeatureClasses(''", "'point")

Listing Fields

e The ListFirelds function lists the fields in a feature class or
table in a specified dataset.

 General syntax:

ListFields (dataset, {wild card}, {field type})

e Example

import arcpy
arcpy.env.workspace = '‘c:/data"
fieldlist = arcpy.ListFields(''roads.shp')

Using Lists in For loops

 The following script creates a list of fields of type
String and determines for each text field what the
length of the field is

import arcpy
arcpy.env.workspace = '‘c:/data"
fieldlist = arcpy.ListFields("roads.shp', "',
"String'')
for field 1n fieldlist:
print field.name + " " + str(field.length)

Using Lists in For loops

 The following script creates a list of TIFF files and
iterates through each file in the list to build
pyramids

import arcpy

from arcpy Import env

env.workspace = '‘c:/data"

tifflist = arcpy.ListRasters('"',"TIF"™")

for tiff 1n tifflist:
arcpy.BuilldParamids_management(tiff)

Creating Custom Tools

Ways to Execute a Script

1. As a stand-alone script

— The script is executed from the operating system or from
within a Python editor such as PythonWin

— When using ArcPy, ArcGIS needs to be installed and
licensed

— No ArcGIS Desktop application needs to be open

2. As a script tool within ArcGIS
— Atool dialog is created to execute the script
— Script tool looks like any other tool in ArcToolbox
— Tool execution is controlled from ArcGIS Desktop

Python Scripts as Tools

= m Market Analysis Tools
=7 Huff Model

HuffModel. py - C:\Paul\Python\Examplesi\MarketAnalysisToolbox_ update01 262010XScript\Huf.
File Edit Format Run Options windows Help

HuffModel.py
Created: 4/13/2007 by Drew Flater

a' Huff Model I =1lEa # Usage: Creating probabhility-based trade areas for retail stores
S — B o
@ Store Locations
| d # Import system modules
& Store Mame Field \ import g¥8, sString, arcgisscripting, o=, traceback, shutil, re
1 Store Attractiveness Fisld ‘ # Create the Geoprocessor object
v| gp = arcgisscripting.create (93]

& Oukput Folder

| |

& Qutput Feature Class Name

Jet overwrite
gp.overwriteoutput = 1

 Study Area def AddPrintHMessage (msg, Severity):

| | print msg

= if sewverity == 0: gp.liddMessage (msg)
¥ Distance Calculation =lif severity == 1: gp.iddTarning(msg)
¥ Huff Model Dptions =lif sewverity == 2: gp.AddError (msg)
¥ Origin Locations and Sales Potential # Start traceback Try-Except Statement:
¥ Potential Store Modeling W

Script parsmeters. ..
- stores = gp.getparsteterastext (0)
I 0K l [Canicel] [Environments...] [Show Help = | store_name = gp.getparameterastext(l)

Store attr = gb.yetparamsterastext (2)
outfolder = gp.getparameterastext (3)

fo_name = gp.getparsmetErastext (4)
studyarea = gp.getparameterastext (5]
blockgroups = gp.getparawmeterastext (&) ﬂ

Ln: 1| Cal: 0

Why Create Script Tools?

Tool dialog makes it easier to use

Tool dialog validates user inputs
Becomes part of all geoprocessing
Environment settings are passed on
Writes messages to the Results window
Easier to share

Does not require user to know Python

Steps to Create Script Tools

1. Create a Python script (.py)

2. Create a custom Toolbox (.tbx)

3. Add a tool to the Toolbox using Add Script
4. Modify the script with inputs and outputs

Example Script: Hardcoded Variables

Import arcpy

from arcpy import env
env.overwriteoutput = True
infc = "c:/data/points.shp"
output = "c:/data/result.txt"

k = 10
n =1
T = open(output, "'w')

while n <= k:
result = arcpy.CalculateDistanceBand _stats(infc, n)
f.write(str(n) + " " + str(result[1])+ "\n'")
n=n+1

f.close()

Tool Parameters and Dialog

= m K_Mearest
5 K-Mearest Neighbor

K-Mearest Meighbor Properties ? %
Genera Farameters | alidation | Help
Display Name Data Type
Input Points Feature Layer
Output Text File Text File
Value of K Long &' K-Mearest Neighbor = = =
& Input Points
& Output Text File

Click any parameter above to see its properties below,

Value of K
Parameter Properties

»
e

10
Property Value

Type
Direction
Multivalue —
Default

m

Environment oK] l Cancel] [Environments...] ’ Show Help ==

Filtar

4| [Tl [»

To add a new parameter, type the name into an empty row in the
name column, dick in the Data Type column to choose a data type,
then edit the Parameter Properties.

0K || Cancel Apply

Example Script: User Provided Parameters

Import arcpy

from arcpy import env

env.overwriteoutput = True

infc = arcpy.GetParameterAsText(0)

output = arcpy.GetParameterAsText(1l)

k = arcpy.GetParameter(2)

n 1

T = open(output, "w'")

while n <= k:
result = arcpy.CalculateDistanceBand _stats(infc, n)
f.write(str(n) + " " + str(result[1])+ '"\n"")
n=n+1

f.close()

More ArcPy Functionality

More ArcPy Functionality

Cursors to work with rows and geometry

— Retrieve, edit, create
arcpy .sa module to work with rasters

arcpy .mapping module for map automation

Creating custom functions and classes

Resources for Python Scripting in ArcGIS

rc

IS Desktop Help

& ArcGIS 10 Help = B8 X
e & A -
Hide Locate Back Home: Options Resource Center
Corterts] Favortes | Search | What is ArcPy? -
=] I:Q| Professional Librany -
ArcGIS 10

E] What's in the Professional Library

@ Data Management
@ Mapping and Wisualization
=1

Geoprocessing
@ What is geoprocessing?
@ A quick tour of geoprocessing
@ Essential geoprocessing vocabulany
@ (Geoprocessing tools
@ The geoprocessing framewaork
@ Commorly used tools
@ Finding tools
@ Executing tools
@ Managing tools and toolboxes
@ Creating tools
@ Sharing tools
@ Geoprocessing with ModelBuilder
= m Geoprocessing with Python
[£] What is Python?
@ Essential Python vocabulary
@ A quick tour of Pythan
@ Accessing tools
@ Working with sets of data in Python
@ Accessing geographic data in Python
@ Geoprocessing with ArcG1S Server
B ([J] The ArcPy site package
[£] What is AcPy?
@ Essential ArcPy vocabulary
@ A quick tour of ArcPy
@ Functions
@ Classes
@ Mapping module
@ Geostatisical Analyst module

1 M Crodbinl Ammhed mmadida

m

ArcPy is a site-package that builds on (and is a successor to) the successful arcgisscripting
module. Its goal is to create the cornerstone for a useful and productive way to perform
geographic data analysis, data conversion, data management, and map automation with
Python.

This package provides a rich and native Python experience offering code completion (type a
keyword and a dot to get a pop-up list of properties and methods supported by that
keyword; select one to insert it) and reference documentation for each function, module,
and class.

The additional power of using ArcPy within Python is the fact that Python is a general
purpose programming language. It is interpreted and dynamically typed and is suited for
interactive work and quick prototyping of one-off programs known as scripts while being
powerful enough to write large applications in. ArcGIS applications written with ArcPy
benefit from the development of additional modules in numerous niches of Python by GIS
professionals and programmers from many different disciplines.

General Help

Fython provides the facility of documentation strings. The functions and classes available
in ArcPy use this method for the package documentation. One method for reading these
messages and getting help is by using the command nelp provided by Python. Running
the command with an argument displays the calling signature and the documentation
string of the object.

>>»> import arcpy
>>> help (arcpy)

m

Virtual Campus Courses

Using Python in ArcGIS Desktop 10

Format: Web Course New Catalug Search
Duration: 1 module (3 hours)
Price: Free Q
Authored by Esri

é‘ print | [¥] E-mail | % Bookmark

Overview || Software Reguirements | | Course Qutline | | Prerequisites _
This is a Free Course

At ArcGIS Desktop 10, Python scripting is tightly integrated into ArcMap and ArcCatalog, allowing you to create
and automate GIS workflows quickly and easily. This course introduces Python scripting in ArcGIS Desktop and

shows how you can use scripts to increase productivity and the quality of your maps and data. The Questions?

presentation covers how to use the new ArcPy mapping module to manipulate map documents and layers. Contact us via e-mail or call
toll-free at 888-377-4575,

Who Should Attend select option 3, between
8:00 AM and 5:00 PM (Pacific

GIS analysts, specialists, and other experienced ArcGIS users who want to automate complex tasks and Time).

common procedures.
Goals

After completing this course, you will be able to

Create basic Python scripts using correct syntax.
Write and run scripts in ArcMap using the Python window.
Use Python in the Field Calculator.

Create script tools to automate geoprocessing operations.

http://training.esri.com

ArcScripts

L]
@ esrl Understanding our world.

Home Industries Products Training

Store | Contact Us | Careers
=5
Search

Support Services Events News About

|Seart:h Support Pages

You are here: > ArcScripts

Search ArcScripts

Use the following options to customize your search:

Alllanguages -
AllESRI software -

10 + Results per page | Show script summaries

Search for Tips

Quick Searches

»« Top ten ArcScripts
The ten most popular ArcScripts.

» Latest ArcScripts
The most recent ArcScripts.

» View all ArcScripts
A complete list of all ArcScripts.

Login | Feedback | Help

ArcScripts are Moving

We at ESRI thank you all for your valuable
contribution to ArcScripts over the years. This
Web site has beenmosty ~ "~ 7 7
community to share a mult

however, this application] 35 OF April 2nd, 2010, ArcScripts i1s closed for

outdated. We have brand 5| naw scripts and edits to existing content;
that are part of the new A

Center. however, we will keep them read-only for at
As of April 2nd, 2010, Ares| |least several years. The direct URLs for

all new scripts and edits t

however, we will keep the. ArcScripts and individual scripts will remain
| t | . The di - .
oo severa years "= % available, and the content throughout will be

ArcScripts and individual s
available, and the contentt gazrchable from the new ArcGIS Resource
searchable from the new £

Center. Zenter.

If you have new scripts, or updates to existing
scripts, we invite you to try the new Code
Galleries.

http://arcscripts.esri.com

ArcGIS Resource Center

AFCGIS.com Support.esri.com * Esri.com Sign In

e ArcGIS Resource Center Help Blogs Forums |

Integrated Support and Community Resources

Learn more about ArcGIS Go to the ArcGIS Blog

ArcGIS Products

= Decktop
= \Web

= Mobile

= Server
= Engine
= Explorer
= ArcIME

Functions User Communities
= 30 GIS = Community Maps

= AroGIS Content = Defense & Intelligence
= GeOprocessing = Electric & Gas

= Geodatabase = Hydro

= Mapping = Local Government

= CAD Integration = Infrastructure

= Data Reviewer = Land Records

= Developer SOKs = Public Safety

= Enterprise GIS = Roads & Highways

= Geacoding = Telecommunications
= Imagery = YWater Utilities

Workflow Manager

http://resources.arcgis.com

Solution Products
= Arclogistics

= Aeronautical Solution
= BLsiness Analyst

= Defense Mapping

= Geoportal Extension
= Mautical Solution

= Production Mapping
= Redistricting

= Tracking Server

ArcGIS Resource Center

ArcGIS.com Support.esri.com « Esri.com Sign In

@ ArcGIS Resource Center Help Blogs Forums Q]

Home » Geoprocessing 10

Modeling and analysis

GeOprocessing

Spatial analysis is one of the more interesting and Population Density

Geoprocessing (60% Influence)

Automation

remarkable aspects of GIS. Using spatial analysis, you can
@ combine information from many independent sources and “
P jL

Potential Park Sites

Modeling and Analysis derive a new set of information (resultsi—by applying a

large, rich, and sophisticated set of spatial operators.,
Modeling | GI5 professionals use geoprocessing to program their own

Tools and Frameswork

Developing ‘éﬁﬂt’:l:; & Analysis | Distance to Parks
ideas in order to derive these analytical results. In turn,
Hal these results are applied to a wide variety of problems, For
Elp

example, here, geoprocessing is used to identify suitable sites for parks, The
Elog result is a dataset of potential park sites for further evaluation, Site selection
logic is used to find areas that are close to where people live but are not too

Forum close to existing parks.

Model and Seript Tool Gallery Learn more about ModelBuilder

Wideos
& :I)suf lassified
Reclassify Rec
Ideas Dm:y Pcamlnﬂn“ o (Population Population
Density) Density
Presentations P
- wWeighted Potential
| GetSupport | > > overlay Park Sites
Reclassify Reclassified
tudidean Distance (Distance to Distance to
Parks) Parks

http://resources.arcgis.com/content/geoprocessing/10.0/about

Beyond ArcGIS

Using PySAL for Spatial Analysis

http://geodacenter.asu.edu/pysal

PySAL

 Python library of spatial analysis methods
 ESDA, spatial statistics, geostatistics

 Growing and expandable

Using R for Spatial Analysis

Open source language for data analysis

Libraries have been developed for spatial methods
Large and active user community

Growing and expandable

ArcGIS and R

Script Tool

< Point Clustering (R Version)

& Input Feature Class

= & R Tools.thx | &

= i . . . Uni 1D Field
5 Poink Clustering (R Version) o 3
& Dutput Feature Class

| | 8

Mumber of Clusters

B

2 12
Cluster Method
| KME&MS_HARTIGAMN w

Attribuke Field(s) (optional)

select || Unselectal | Add Field

[(] 4] [Cancel] [Envirunments...] [Show Help ==

Python script that calls R

import arcpy =@a= ARCPY
import arcpy.management == DM
import oS == 08
import sys as S¥S
import subprocess == SUEB
#H##H# Parameter Dictionaries HHH#E
clusterDict = {"ENEANG HARTIGAN™: "kmeansHartigan®, "CLARA™: "clara™,
"E_cCLUST": "bolusc™, "M CLUST": "Mclust",
"ECCA EMEANZ": "kocoaFwmeans',
"CMEANS™: "cmeans'™}
& Point Clustering (R Version)
def PointClusters():
& Input Feature Class #fifi# Get User Provided Inputs H#f#
| _L%I p inputFC = '"' + ARCPY.GetParameterksText(D) + '™
& Unique ID Field wasterField = str (ARCPY.GetParameterdsText (1))
| v| outputFC = ' 4 ARCPY, GetParameterAsText (2) + '™
+ Output Feature Class num lusters = ARCPY.GetParsmeterisText (3)
N clusterMethod = ARCPY.GetParamweterisText (4)
| | g clusterMethod3tr = clusterDict[clusterMethod]
Mumber of Clusters varllames = ARCPY.GetParameterisText (5)
varNames = [str(i) for i in varNames.spliti":™)]
J varlames = ":".join(varlNames)
2 12
#fif8 Create B Command #i##
Cluster Method pyScript = SYS.argv([0]
|KME-°‘N5_H'°-RTIGF‘N hd toolDir = 0%.path.dirname (pyScript)
Attribute Field(s) {optional) ricript = 03.path.joini{toollir, "PointClusters.r'™)
r3cript = '™ 4+ r3cript + '™
ARCPY,Z3etProgressor ("defsult™, "Executing R Zcript...™)
args = " ".Jjoin([inputFC, masterField, outputFC,
numClusters, clusterMethodStr,
varlame=s])
RCHMD = "R —--slave —-vanilla --args "
crd = RCHMD + args + " < " 4+ r3cript
#E#8 Uncomwment Next Line to Print Cownand $H#H
H#ALRCPY. AddWarning (cmwd)
#f## Execute Command HHEHH
Select all] [Unselect all] 03 . systew (cwd)
[oK ” Cancel][Environments... ” Show Help == Bi# Project the Data #Hal . . .
DM.DefineProjectionfoutpucFC.scripi'™'), inputFC.stcrip('"™'}1)
#fif#i#f Fender the Besults H#fs
paramwms = ARCPY.gp.GetParastneterInfo()
renderFile = OS.path.join(toollir, "REenderClusters.lyr™)
params[2] . 3yrbology = renderFile

Evaluating R Statemen

S

. 2 Evaluate R Statements =N X
E--% Statistics .
R statements
EI % Evaluate R Staternents |
-2 Evaluate R Statements print(Hello world1) +
print{zummary{rara)) —
-2 Evaluate R Statements in Text File Speed <- cars$speed X[|5
Distance <- cars&dist —l
% E‘.-:|;II||:IFE DEltEl » plot{Speed,Distance, panel. st =lines{stats:lowess(Speed... 1+
..% Model Data) 3
1 R Graphics: Device 2 (ACTIVE) =HICl X | -
File History Resize
oK | Capicel I Environments. .. Show Help ==
/
& 4 u] /l
S | Evaluate R Statements / @
B Executing Evaluate R Statements...
[u} =
=g o .) - () <« Details
o O [j/ =] ™ Close this dislog when completed successfully
2 [m] e
L; @ o o ’/ Executing (REvaluate 12): REvaluate int ("Hello,world!") ;print (summary (cars)) 'Speed <- cars -
o o ’//D 8 %speed';'Distance <- carsfdist':plogfiSpeed,Distance,panel.first=1lines (stats::lowess
o /"/D o (Speed,Distance), lty="dashed") ,pch5f,cex=1.2,col="blue”) %# # # # x v z m # "Last statement result"
2 o b Start Time: Tue Mar 03 15:46:37 9
o o ”,'” o Running script REvaluate...
o u [1] "Hello,world!™
o o S.oRBEn speed dist |
& 0ol 0 Min. 1 4.0 Min. : 2.00 3
a 4 o 1st Qu.:12.0 1st Qu.: 26.00
e a Median :15.0 Median : 36.00
o4 0 HMean :15.4 HMean 1 42,38
T T T T T 3rd Qu.:19.0 3rd Qu.: 56.00
5 10 15 20 25 Max. :25.0 Max. :120.00
Waiting for R windows to be closed...
Speed i

Concluding Remarks

Python is a relatively easy to learn language
ArcGIS is becoming more “Pythonesque”

Creating time-savings scripts for repetitive tasks does
not take a lot of code

Easy to share script tools

Paul Zandbergen

Department of Geography
zandberg@unm.edu

www.paulzandbergen.com

Workshop Materials Posted

SEARCH

Dr. Paul Zandbergen

HOME BIC TEACHING RESEARCH PUBLICATION S PRESENTATION 5 WORSKHOP S TOOLS & DATA TEAM CONTACT

worskhops

Workshops at the 2011 Crime Mapping Conference

Crime Hotspot Mapping and Analysis

Presentation Slides

Python Scripting for ArcGIS _

Presentation Slides
Exercises Instructions } posted untll October 24

Exercises Data

PythonWin Editor for Python 2.6

http://www.paulzandbergen.com/workshops

